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Self-avoiding polymer trapped inside a cylindrical pore:
Flory free energy and unexpected dynamics
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We study the elastic and dynamic behavior of a self-avoiding chain confined inside a cylindrical pore using
a Flory-type approach and molecular-dynamics simulations. In the Hookean regime, we find that the effective
spring constant of the chain is given by k.~ N~'D~?, where N is the number of monomers and D the diameter
of the pore. While the Flory approach reproduces the earlier scaling result y=1/3, our simulations confirm a
more recent numerical result y=0.9 for the computationally accessible regimes. In the absence of hydrody-
namic interactions, the relaxation dynamics of a stretched-and-released chain in this regime is characterized by
a global relaxation time 7z~ N’D? with the same exponent vy for k.. We also discuss how chain relaxation
under confinement is influenced by hydrodynamic interactions. In the presence (or absence) of the hydrody-
namic interaction, the finite-size effect observed in k. is shown to persist in chain relaxation, resulting in 75

markedly different from previous results.
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I. INTRODUCTION

Confinement influences the equilibrium and dynamic
properties of a polymer in a fundamental way. Reptation is a
well-known example, where the basic length and time scales
of chain molecules are altered qualitatively because of a
tubelike spatial constraint each chain experiences [1,2]. In a
living cell, many essential physical processes involving
biopolymers, from protein translocation [3] to bacterial chro-
mosome segregations [4], may have evolved in a specific
way because of the presence of various spatial confinements
in the cell. On the other hand, nanofabrication technologies
have allowed one to probe the elastic properties of double-
stranded DNA in both pore- and slitlike geometries, espe-
cially when the confining dimension is comparable to the
persistence length of the strands [5,6]. In the context of poly-
mer thin films, the role of confinement on glass transitions
has been extensively discussed [7]. Despite its fundamental
and practical importance, theoretical understanding of chain
molecules in a pore has remained far behind the experimen-
tal progress. We have recently reported force-deformation
relations of such a chain [8], but we did not explore its im-
plications on dynamics.

The main purpose of this paper is to present a quantitative
picture of the elastic and dynamical properties of a cylindri-
cally confined polymer. As we shall discuss, these two prop-
erties are closely related to and complement each other, es-
pecially when hydrodynamic effects can be ignored. To this
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end, we bring together a Flory-type approach and molecular-
dynamics (MD) simulations. Moreover, to address the sig-
nificance of hydrodynamic interactions in determining chain
relaxation, we combine our simulation results and a theoret-
ical approach to chain diffusion in a pore developed by
Harden and Doi [9].

We first show that in the absence of hydrodynamic inter-
actions our Flory approach is fully consistent with the scal-
ing approach by Brochard and de Gennes [10]; it correctly
reproduces the scaling results for confinement free energy
and global relaxation times 7z, among others. On the other
hand, our numerical results for 7, in the presence or absence
of hydrodynamic interactions, noticeably differ from those
found in previous simulation studies [11,12], which support
the scaling predictions [10] [see Eq. (6)]. They are, however,
consistent with more recent simulations that clearly suggest
unexpected relaxation of chain molecules trapped in a cylin-
drical pore in the computationally accessible regimes [8,13]
(as already hinted much earlier by Kremer and Binder [14]).
To see this effect, in the presence of hydrodynamic interac-
tions, we calculate chain friction &g,;, (thus 7z as well) by
explicitly using our simulation data in the aforementioned
approach [9]. This enables us to track down the origin of the
discrepancy: the main cause is the finite-size effect exten-
sively discussed recently [13], which persists in chain relax-
ation (whether the hydrodynamic interaction is included or
not).

This paper is organized as follows. In Sec. II, we present
a (renormalized) Flory theory of a self-avoiding chain
trapped in a cylindrical pore with a brief discussion on a
corresponding problem in slit geometry. Simulation methods
and results for 75 are discussed in Sec. III, followed by our
analysis on hydrodynamic interactions and finite-size effects.

©2009 The American Physical Society
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II. FLORY THEORY
A. Cylindrical confinement

Much progress in understanding chain molecules often
thrives on simplification due to their intrinsic complexity. In
this regard, it is hard to exaggerate the success and impact of
Flory’s brilliant scheme for computing the equilibrium size
of a swollen polymer chain in a good solvent [15].

Consider a swollen polymer carrying N monomers of size
a each with its end-to-end distance R. Then, the trial Flory
free energy in d spatial dimensions is expressed as [16]

R 4N?
BFLAR) ~ 5+ o (1)
Here and below, 8=1/kgT with kg as the Boltzmann constant
and T as the absolute temperature. Also, we only consider an
athermal case, i.e., the excluded volume of each monomer is
a? independent of T. The first term describes the chain elas-
ticity of an “entropic spring,” while the second term repre-
sents the mean-field energy of (two-body) excluded-volume
interactions between monomers on the chain [1,15]. The
equilibrium chain size or the Flory radius, R, is obtained by
minimizing F,; with respect to R: for d=4, Rp~aN" with
v=3/(2+d) (e.g., v=3/5 for d=3). This exponent v is
rightly designated as the Flory exponent.

As de Gennes correctly pointed out, however, Flory’s
theory benefits from the “remarkable cancellation” of errors
(overestimates) of both terms in Eq. (1) [1]. To see this, note
that at R=R the Flory free energy scales as

BFuRp) ~ NE/240, )

This is equivalent to stating that the number of monomer
contacts scales as N?/R.~ N>~ (~N'3 for d=3 [17]), con-
sistent with the mean-field theory. For d=3, however, this is
an overestimate and, in fact, BF _4(Rp) ~ 1 is expected to be
asymptotically valid in d=3 [18-21].

Despite the aforementioned limitations, mainly due to its
simplicity, Flory-type approaches have been extended to
many other important cases, e.g., linear chains with stiffness
[22,23] and polymers of various topology in a confined space
(for a review, see Ref. [24]). In particular, the widely used
free energy of a linear chain in a cylindrical pore has the
following form [24,25]:

R a’N?
2t
Na D RH

BF(R,,D) ~ (3)

where R is the trial chain size in the longitudinal direction
and D is the width of the cylinder (see Fig. 1).

Although Eq. (3) produces the correct scaling for the
equilibrium chain size Ry~ Na(a/D)*? [1], its applicability
beyond the computation of R, is limited by the following
two important errors: (i) for a chain in equilibrium (R,
=R,), Eq. (3) predicts BF~ N(a/D)*?, but the correct free
energy should scale as BF~ N(a/D)>? [1,10]. (ii) Equation
(3) results in an effective “Hookean™ spring constant k.g of
the chain, given by Bk.g=(5*BF/ c?Rﬁ) RH:R"0~N‘1a‘2, but the
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FIG. 1. MD simulation results (squares) for the normalized den-
sity of monomers, p(r ), for N=256 and D=5, as a function of r ,
the normal distance from the symmetry axis of the cylinder in units
of o. Because of the wall effect, p(r,) decays to zero as r; ap-
proaches the radius of the cylinder, R | =D/2. Here the diameter D
is roughly the maximum normal distance between the centers of
two monomers, as illustrated in the inset.

standard scaling result is Bke~N"'D™"3a=53 [6,10]. These
drawbacks share the same origin as the Eq. (2) for d=3 by
breaking the “kgT per blob” ansatz.

Recently, we have proposed, and confirmed using simula-
tions, the following “renormalized” free energy for a poly-
mer under cylindrical confinement near its equilibrium
length [8],

R DWIg’
(NIg)D* ~ Ry

ﬁFCyI(RH’D) s (4)

where g is the number of monomers inside a blob of diam-
eter D, i.e., g=(D/a)”>. The basic idea is to consider the
confined space inside a cylinder as an effective one-
dimensional space (d=1) and, hence, to introduce the length
scale D accordingly in Eq. (1) by rescaling a—a’=D and
N—N'=N/g. Then, the first term can be understood as the
chain being made of N/g subunits (“blobs™) of size D, while
the second term describes the mutual exclusion between
neighboring blobs.

Indeed, the above free energy produces not only the ex-
pected equilibrium chain size Ry~ Na(a/D)??, but also the
correct blob-overlapping free energy of BF..~N/g
~ N(a/D)*? (namely, the total number of blobs) [1,10]. Note
that this is identical to the earlier result for confinement free
energy based on the blob-scaling approach [1]. Importantly,
we obtain the correct effective Hookean spring constant
of the chain: keff~&zfcyl/&Rﬁ|R”=RH0~N‘1a‘“”D”V‘2
~N"'a2(a/D)"? [6,10]. Moreover, using the stretch-release
argument, the global (slowest) relaxation time of the con-
fined chain (in the absence of hydrodynamic effects) is then
reciprocally  obtained as  Tg~N/kyy~N?a'/?D*7""
~N?a*(D/a)"3, consistent with the earlier scaling result
[6,10].
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B. Slit geometry

A natural extension of Eq. (4) to the slit case [26] would
be obtained from Eq. (1) with the same rescaling of a—a’
=D and N—N'=N/g, assuming d=2, as follows:

R DXNig)

2 2
(N/g)D R;

BFqiu(Ry.D) ~ . (5)
where D is the distance between the two parallel slits and
g~ (D/a)>". Indeed, this free energy predicts the correct
equilibrium size of the chain in a slit, Ry~ aN>*(a/D)"*, in
agreement with the results of other approaches [1,24]. How-
ever, its equilibrium free energy, BF (R =Ry, D), scales as
N'Y2(a/D)3. Note that this is different from the free energy
of slit confinement BF,,.;~ N/g~ N(a/D)>?, which is iden-
tical to that of a cylinder up to numerical prefactors (see
Refs. [1,26] and references therein). Beyond the computation
of Ry, the applicability of the slit free energy in Eq. (5) is
questionable.

Why does the Flory approach work better for the cylinder
case than for higher dimensions? To see the difference, con-
sider the volume fraction (@) of monomers inside a space
explored by a self-avoiding chain in equilibrium. For cylin-
drical confinement, this is given by a=Na’/D’R),
~(D/a)™3, independent of N, whereas, both for a slit and
for a dilute bulk solution, «—0 as N—ce. It is this special
nature of compactness of one-dimensional space that ex-
plains the extensiveness and thus the success of the rescaled
Flory approach in Eq. (4) [27].

III. SIMULATIONS AND RESULTS

A. Simulation methods

We have conducted MD simulations with a bead-spring
model of polymers trapped inside a cylindrical pore. Beads
or monomers (among themselves and with the confining
walls) interact via the fully repulsive Weeks-Chandler-
Andersen (WCA) potential [28], Uyca(r)=4€(r/o)™"?
—(r/o)+1/4] for r<2"¢ and 0 otherwise. Here, € and o
represent the strength and range of the WCA potential, re-
spectively. (Accordingly, o=a in our simulations.) Finally, r
denotes the center-to-center distance between two beads, or
the distance of a bead center from the confining cylinder
minus o; as a result, the diameter D is the maximum distance
normal to the cylinder between the centers of two beads (see
the inset of Fig. 1).

The bond between two neighboring beads was modeled
by the finite extensible nonlinear elastic potential [29],
Upeng(r)==0.5krg In[1—(r/r)?] with the molecular spring
constant k=10e/ o and the maximum bond length ry=20.

Newton’s equations were integrated with the velocity Ver-
let algorithm with a time step or=0.0l7, where 7
=a(m/ €)"? represents the characteristic time scale with bead
mass m=1 [30]. A Langevin thermostat [31] was used to
keep the system at a constant temperature 7=1.0€/ky with
damping constant 1.077! applied in all directions.

Initially, the system was equilibrated until the steady state
was reached (=107 time steps). We then pulled on the two
ends of the polymer chain and obtained the longitudinal
force f to keep the ends at a distance R.
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Figure 1 displays a typical number density of beads
(squares), denoted by p(r, ), for N=256 and D=5, as a func-
tion of r, the normal distance from the symmetry axis of
the cylinder; this is a result of 5000 different time averages
in a long time simulation for f=0. [Here and below,
all length scales are estimated in units of o (or a), unless
otherwise specified.] The density is normalized so that
J§+2mr p(r )dr, =1, where R, =D/2. Because of the con-
fining wall, p(r ) decays gradually to zero, as r| —R . We
do not observe any noticeable range of a plateau (for the
parameters used), since the corresponding correlation length
in bulk [1] is comparable to the blob size D. This implies that
the effect of the confining wall propagates up to the center of
the cylinder r, =0. The slight fluctuations at small r, just
reflect the cylindrical geometry of the pore: the vanishingly
small volume element for r;, —0. However, it is not just
p(r ) but the combination of 27r p(r, ), which is relevant
in our discussion below [cf. Eq. (7)]—for the latter, the error
bars are smaller than the symbols used in Fig. 1. [For this (or
similar) reason, we do not include error bars explicitly in
Fig. 1 (and in other figures).]

B. Force stretching in a cylindrical pore

We have simulated for a wide range of parameters: D
=4,5,...,14 and N=128,256,512. In Fig. 2(a), we have
plotted our simulation results of force vs extension. The
force-extension curves (FECs) tend to collapse onto each
other for sufficiently large f, where the wall effect becomes
minor [32]. Note that for a fixed f the FECs for different
values of N converge onto each other. This is consistent with
the picture of the confined chain as a linear string of blobs:
R~ N; the effect of f is to reduce the blob size not the
linearity.

Figure 2(b) confirms the previous study [8,13] that the
force-relative extension (AR;=R,—R) curves tend to con-
verge onto one another, when f is rescaled by D%°. The D
exponent was chosen by a global fit to the data. This shows
that k.~ N~'D™0°. This is a significant deviation from the
blob-scaling results [10]. In fact, it has been estimated that
the asymptotic limit is reached for N=10* [13]. Thus the
discrepancy can be attributed to finite-size effects. Neverthe-
less it is evident that k. increases as D becomes smaller as
expected [13].

Our results in Fig. 2 are in excellent agreement with ear-
lier force-extension results [20] despite (slightly) different
simulation settings: in the latter, two end beads were con-
fined to piston walls (but otherwise free), while they are free
in this study. This is not surprising since the piston-wall
boundary condition becomes less important when the chain
is stretched with an external force.

C. Release of a force-stretched chain in a cylindrical pore

Using MD simulations, we have also studied the time
evolution (relaxation) of a cylindrically confined chain,
which is initially stretched beyond its linear regime and then
released. To this end, we ignore hydrodynamic effects. (Such
chains are said to be in an “immobile” solvent [19].) Then,
the relationship between two simulations (stretching and re-
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FIG. 2. (Color online) MD simulation results for force-extension
curves (FECs). (a) The FEC is sensitive to D for weak-to-moderate
deformations; it becomes D independent for sufficiently large f, as
it should. On the other hand, the FECs for different choices of N
tend to collapse onto each other, when R is rescaled by 1/N. This
means linear ordering of the confined chain, i.e., Rj~N. (b) Res-
caled f-extension relations. When f is rescaled by D?(y=0.9), the
FECs converge onto each other; the exponent y was set by a global
fit to the data.

laxation) becomes straightforward and the effective spring
constant k. is reciprocally related to relaxation times 7 as
TR ™ N/ keff-

Figure 3(a) shows our simulation results of extension of a
stretched chain after release as a function of time. The mea-
sured ((Rﬁ(r))—(Rﬁo))/N2 is averaged over 800 statistically
independent simulations with different realizations of initial
conformations, where (...) is an ensemble average. Initially,
each curve decays rapidly but nonexponentially. It then
crosses over to what appears to be a single-exponential de-
cay, i.e., (<Rﬁ(t)>—(Rﬁ0>)/ N>~ 7"’ where Ty is the slope of
the curves. This is the dynamic analog of the Hookean re-
gime in the force-extension relation. Obviously the exponen-
tial decay represents a slower relaxation compared to the
nonexponential decay. In this sense, the overall chain relax-
ation is mainly governed by the exponential relaxation.

In Fig. 3(b), we see how 7z/N? varies with N and D. For
a fixed D, the data for various N values collapse onto each
other. The slope of the curves is found to be =0.89 £0.02,
and we thus find 7, ~N?D*39=092 This is indeed consistent
with our simulation result for k. from 7z~ N/ky. In this
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FIG. 3. (Color online) (a) MD simulations of chain relaxation
for N=256. The time evolution of a polymer, which is initially
stretched beyond its linear regime and released, was measured di-
rectly using MD simulations. Our results for (<Rﬁ(z))—(Rﬁ0))/ N? are
displayed as a function of time . Initially, the chain relaxes rapidly
and nonexponentially. Chain relaxation crosses over to a single ex-
ponential decay: in this regime, (<Rﬁ(z))—(Rﬁ0))/N2~e"’/ R, where
7 is the (slower) relaxation time, which governs overall chain re-
laxation and is the dynamic counterpart of the Hookean response.
(b) The slopes of the curves in (a) in the slower relaxation regime
are related to the longer relaxation times 7. The reduced relaxation
time 7,/N? is displayed as a function of D in a log-log plot for a
few choices of N. From the slope of the best fit to the data, 73 is
estimated to be 7p~N>D? with y=~0.89 +0.02.

analysis, it is assumed that the chain friction is additive (thus
overestimated); in reality, however, the friction can be
screened by hydrodynamic interactions. For R,=Ry, i.e.,
when the chain is in the Hookean regime, the hydrodynamic
interaction (HI) can readily be included at the scaling level
(see below).

IV. HYDRODYNAMIC INTERACTIONS

At the scaling level, the effect of HI can be considered as
renormalizing the chain friction [10]. Let N,=N/g
~N(a/D)’”? be the number of blobs and 7 the solvent vis-
cosity, the friction coefficient of each blob &, ~ 7D and
thus the chain friction &, ~ 7D X N,~ nNa**D~?" [10].
On the other hand, Bk.g~N,'D™2~N"'D"13¢= assuming
the chain is in the Hookean regime. We then find 73
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~ Eqii kg~ BYDN, X NyD? ~ ByL?*a*3D~'3. To summa-
chain/ Keff Ny b 7
rize, we have

{ pL*D"3a*®  without HI
TR ~

, 6
pL*D™"3¢*?  with HI (©)

where L=Na. The hydrodynamic effect is equivalent to re-
placing the term (D/a)"? by (a/D)'3, as discussed in Ref.
[10].

For finite N, however, the analysis becomes complicated.
As shown above and elsewhere [13,8], finite-size (N) effects
can persist up to N~ 10*. Also, the friction renormalization
scheme used above (&, ~ 7D X N,) is questionable. Nev-
ertheless, we find an empirical scaling Bk.;~ N~'D~7, where
the exponent 7y deviates from the Hookean scaling result y
=1/3 and is nonuniversal in the presence of finite-size ef-
fects.

To understand how chain friction is influenced by con-
finement and finite-size effects, we used our MD results in
the theoretical approach to chain diffusion in a pore, pro-
posed by Harden and Doi [9]. The approach is similar, in
spirit, to Zimm theory (of an unconfined chain) [2,9] and
relies on a set of assumptions and simplifications. First, an

fchain

2
Eohain 1 %o {

27°R Ji(a)

where a,=2.405 is the smallest zero of Jy(x), the zeroth
order Bessel function of the first kind. In principle, &,;, can
be written as an infinite series. As argued in Ref. [9], how-
ever, the first leading term shown above is a good approxi-
mation to the full series, as long as Rjy>R .

To analyze Eq. (7), we first invoke some simplification.
Perhaps, the most dramatic one is the uniform-density ap-
proximation already explored [9], i.e., monomers fill the cy-
lindrical cavity uniformly despite the presence of the confin-
ing wall. This simplification leads to p=1/27R? and g(k;)
=2N/(Ryok))(1-cos kiRyo) [=27NS(k))/ R for R;> D] [14].
Accordingly, the blob-scaling result for &g, discussed
above (in Ref. [10] as well) is reproduced.

In Fig. 4(a), we have plotted &4, as a function of D. To
this end, we have used explicitly, in Eq. (7), our MD data for
p(r ) and g(k;) obtained for N=256. [See Fig. 4 for a typical
g(ry), i.e., the inverse Fourier transform of g(k;).] Our results
described by diamonds [top ones (in blue)] in Fig. 4(a) sup-
port a simple power law, &,/ N~ D~%7? represented by the
solid line (in blue). The D exponent of &, deviates some-
what from the asymptotic (N—) scaling result —2/3
~-0.67 [10,9]. When g(k;) was used in place of g(k) [dia-
monds (in cyan)], labeled as “hybrid,” the D exponent was
found to be —0.71 [the solid line (in cyan)]. The deviation
from the full analysis is minor indicating that our simulation
data for g(r;) are well approximated by g(r;). As indicated in

Ry apr | 2 ki
2m drir Jo\ — |p(r)) dkye————"—"=
0 RL —o0
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implicit (thus continuum) solvent is assumed; the solvent is
an incompressible viscous fluid, which influences the dy-
namics of beads via its viscosity and “no-slip” boundary con-
ditions, i.e., the solvent sticks on each bead and on the con-
fining wall as well. As a result, the HI between beads and the
HI between a bead and the confining wall depend on their
positions. Perhaps, the most crucial simplification is the
preaveraging approximation in which the HI of beads is
preaveraged over chain conformations. In principle, the dif-
fusion constant of a confined chain can be obtained without
further approximations. For strong confinement or in a nar-
row capillary (R/>R,), however, one can utilize the
“ground-state-dominance” approximation, which amounts to
keeping the first leading term of the diffusion constant ex-
pressed as an infinite series [9].

Let ry be the longitudinal component of a position vector
in a pore and r; a normal distance from the symmetry axis
of the pore (r, =R, =D/2); let & . =nNa, p(r,) the nor-
malized monomer density, and g(k;) the longitudinal struc-
ture factor, where k; is the Fourier conjugate to r. Then,
following Ref. [9], the ground-state-dominance term of &.,ip
can be expressed in our notation as

. ™)

Fig. 4(b), the agreement is better for smaller D, as expected
on physics grounds; in the extreme case D=~a, the chain
resembles a uniform-density rod. On the other hand, when
we used p=p and g(k)=g(k) in Eq. (7), we obtained
Epain/ N~ D001 for N=256 [the bottom solid line (in red) in
Fig. 4(a)]; in the limit N — oo, the asymptotic scaling result
(€cpain/ N~ D?3) is fully recovered (dotted line) [33].

Why is &g.in/N not so sensitive to N, while k. suffers
greatly from finite-N effects? First, note that the blob-scaling
result for Ry is easily satisfied for a wide range of N, even
though the asymptotic regime for k. can be reached only if
the chain is impossibly long to simulate with the current
computational power [13]. In fact, our simulation data for
N=256 already indicate Rj,~ND™% (for 4=D=11), in
excellent agreement with the blob-scaling approach [10,1],
while the estimated D exponent of k. deviates significantly
from the scaling exponent. The N dependence enters &,
in Eq. (7) mainly via the term g(k;). Our analysis above
(red solid vs black dashed) indicates that g,(k;) approaches
quickly  the asymptotic  structure  factor g, (k)
=2mN68(ky)/Ryy (data not shown). This demonstrates the in-
sensitivity of &y.in/N to N (as long as Rjg/D>1).

Our results for k.p and &, suggest that 7p=~E qain/ Kefr
~ ByN?DP17=0:04 [34] for N=256. This is in contrast to re-
cent simulation results [11,12], which somehow support the
scaling prediction. Caution has to be used here, since the
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FIG. 4. (Color online) (a) Chain friction versus D for N=256.
Our results (diamonds) are well described by &~ ND™°7%. When
8(k)) was used in place of g(k)) (labeled as “hybrid”), the D expo-
nent was found to be —0.71. When the monomer density is assumed
to be uniform in the pore, the chain friction for N=256 is found to
be & pain~ ND 0! [the bottom solid line (in red)]; as N— %, &pqin
converges to what we expect from the blob-scaling approach, i.e.,
Epain~ND™?3. (b) Comparison of our MD simulation result for
g(r) (diamonds) with g(r)) [solid lines (in red)], obtained with the
assumption of a uniform monomer density, both for N=256. Two
choices of D were used: D=5 and 7 (in units of o). The overall
agreement between simulations and theory is better for the smaller
D, as expected; the pronounced discrepancy for sufficiently small r;
arises from monomer correlations within length scales <D, which
are suppressed in the uniform density approximation. The discrep-
ancy for large r|(rj= Ry) originates from end fluctuations. (See Ref.
[14] for relevant discussions.)

simulation settings were different in these simulations
[11,12] (e.g., nonequilibrium relaxation in [11] and (locally
stiff) wormlike chains in a solvent flow in [12]). On the other
hand, it is worth noting that our result for k. is consistent
with two other recent results based on flexible-chain models
[13,8]; all these support strong finite-size (N) effects on ke
[35]. Naturally, one should expect these effects to persist in
the dynamic properties of a confined chain. Furthermore, as
explained above, &, (like Ryo) is less sensitive to finite-size
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effects, in the parameter range used in our simulations (also
see the endnote [35]). Accordingly, the D dependence of 75
is expected to deviate significantly from what one may ex-
pect from the scaling picture: as a consequence of finite-size
effects, k. increases with decreasing D much more rapidly
than in the scaling approaches presented in Sec. II and in
Ref. [10]. This effect overcompensates the enhanced friction
for smaller D (recall £, ~ ND~>? in the scaling limit). This
explains the positiveness of the D exponent of 7z. We expect
that the hydrodynamic effect will eventually catch up with
the finite-size effect as N increases and become dominant in
the scaling limit of N— <0, as indicated in Eq. (6).

V. CONCLUSION

The emerging conclusion from this work and our recent
studies [8] is that a Flory-type approach, if constructed with
care, can be used to describe weak-to-moderate chain defor-
mations in the presence of cylindrical confinement. The main
advantage is that it offers a simple picture, which is consis-
tent with the blob-scaling approach. For strong stretch out-
side the Hookean regime, however, both the scaling ap-
proach and our Flory approach become inaccurate. In that
case, a new length scale, i.e., the tensile blob size (£), enters
the picture [8]. Because of the subtle interplay between con-
finement (D) and chain deformations ({), the problem of
confined polymers in nanopores still defies a complete de-
scription (see Ref. [8] for a recent attempt).

On the other hand, our simulations show how chain elas-
ticity and relaxation dynamics are influenced by finite-size
effects (which tend to persist up to chain length N=10%).
The significant finite-size effects discussed in recent studies
[8,13,14] and here are responsible for clear deviations from
the scaling predictions of relaxation dynamics in the pres-
ence or absence of hydrodynamic interactions [10]. Such
considerations will be important in properly interpreting
other simulation studies with relatively short chains. How-
ever, direct comparison with the recent DNA simulations
[12] will be obscured by the aforementioned complexities we
ignored in this work. Further consideration along this line
will be desirable.
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mum. The blob-scaling picture hinges on the (hidden) assump-
tion that each blob deforms independently of each other; thus
the free energy cost per each blob can be obtained accordingly.
It is conceivable that this assumption works better for larger N,,
(No. of blobs) and D; at the opposite extreme limit of D=a,
blob deformations are expected to be strongly correlated. This
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may explain the discrepancy and the sensitivity of k. to finite-
size effects. On the other hand, such quantities as Ry, and
g)(R)) are essentially determined by free-energy minima, not
variations; they are expected to enter the scaling regime more
easily, as demonstrated in this work (see also Ref. [13] for
relevant discussions).



