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ABSTRACT: We study the relationship between intrachain ordering and
segregation tendency of two polymers confined in a cylindrical space. We find
the chains segregate spontaneously even outside de Gennes’ linear-ordering
scaling regime, in which each chain is a linear array of blobs. When the chains are
weakly compressed against each other, linear ordering is well preserved and the
chains remain segregated. On the other hand, for moderate compression, new
chain-ordering units emerge at intermediate length scales, within which blobs are randomly packed; yet these units (termed
“superblobs”) are linearly ordered, and the chains still segregate in the confined space. As the chains continue to be compressed,
the linear regime disappears, but the chains can resist mixing effectively, more so in a more asymmetric space. We conclude that
the linearly ordered E. coli chromosome is in the segregation regime.

I. INTRODUCTION
Considerable effort has been made recently to understand how
chromosomes are spatially organized in cells.1−8 In particular,
the entropic mechanism highlights the interplay between chain
entropy and confinement:3−8 under the right conditions, two
chromosomes partition or segregate spontaneously mainly
driven by their chain entropy, especially in an elongated
bacterial cell. Qualitatively speaking, under cylindrical confine-
ment, chain molecules become more compactly space-filling
and thus constrain each other better9 (see refs 10 and 11 for a
polymer solution trapped in a cylindrical pore). This explains
how entropic forces are brought about when individual chains
experience anisotropic confinement. This entropic picture has
offered quantitative insights into chromosome segregation,
especially in rod-shaped E. coli cells,3−6 and challenged the
conventional view that requires dedicated segregation machi-
nery as in eukaryotes.12,13 It is worth emphasizing that the
entropic picture is rather generic and largely independent of
molecular details.6 It remains relevant under a variety of
physical constraints (e.g., ring chain topology and chain cross-
linking).3,6 A recent study even points out that various DNA
binding proteins cooperate with the process of entropic
segregation.3

However, confined polymers have been much better
understood at the single-chain level, whether they are flexible
or stiff.14−20 For instance, (open) cylindrical confinement
induces linear chain ordering6−21 and stiffen them.6,18,19 This
polymer picture is consistent with the recent observation that
the E. coli chromosome is linearly organized with high precision
along the long axis,22,23 which would otherwise remain
disordered (see refs 6 and 15 for theoretical explanations).
Confinement not only reshapes individual chains21 but also has
a nontrivial impact on how they interact (see ref 6 for some

primitive discussion). Despite its significance in further
exploiting the entropic mechanism, the relationship between
intrachain organization and segregation remains to be explored.
Is linear ordering required for chain segregation, as often
assumed in the literature?3,5,10

Here, we study the relationship between intrachain ordering
and segregation tendency of two self-avoiding chains confined
in a closed cylindrical space (i.e., a cylinder capped at both
ends), using molecular dynamics (MD) simulations as well as a
phenomenological free energy approach; see the illustration in
Figure 1. In particular, we consider the “internal distance” of
each chain, Rij, i.e., the direct distance between two monomers i
and j on the same chain, as a function of |i − j|. We then relate
it to the way the confined chains interact. Even though our
study is limited to linear chains, its applicability goes beyond
the linear case, since the effect of ring topology is shown to be
mimicked in the linear case by appropriately reducing cylinder
diameters.6

When the chains are weakly compressed against each other,
we find that their linear ordering is well preserved beyond ξ ≈
D, as in an open cylinder, and they remain segregated.3−6 Here,
ξ is the blob size or a length scale at which the crossover from
the self-avoiding walk (SAW) to linear regime occurs and D the
diameter of the cylinder.21 For moderate compression,
however, new ordering units emerge at some length scale ζ∥
(>D) in the longitudinal direction, each consisting of several
randomly packed blobs. Similarly to blobs in an open cylinder
or in the weakly compressed case, these units are linearly
ordered and are referred to as “superblobs”. As a result, the
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chains segregate up to 80−90%. As the chains continue to be
compressed, linear ordering is eventually lost, but the chains
can resist mixing effectively and remain segregated up to 70−
80%, more so in a more asymmetric space. While the chains do
not mix, if linearly ordered, linear ordering is not a requirement
for segregation.
Our results suggest that the linearly ordered E. coli

chromosome22,23 is in the spontaneous segregation regime.
However, we do not attempt to resolve any discrepancy
between the competing (active vs entropic) segregation
mechanisms but content ourselves with general principles
that are common to interacting chain molecules under
confinement.
The article is organized as follows. The simulation procedure

is outlined in Sec. II. Sec. III is mainly devoted to the analysis
and interpretation of simulation results. In particular, the
interrelationship between chain ordering and segregation is
discussed in detail. Also, a free energy basis of chain segregation
is presented. The entropic segregation of E. coli chromosomes
is reconsidered in view of the interrelationship and the
relevance of our polymer model is discussed.

II. MOLECULAR DYNAMICS SIMULATIONS

In our MD simulations, we use the bead−spring model of a
polymer, which is characterized by two distinct interactions.
(See subsection III.C for its relevance for the study of
chromosome organization.) First, beads (among themselves
and with the confining walls) interact via the fully repulsive
Weeks−Chandler−Andersen (WCA) potential:24
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Here ε and σ represent the strength and range of the WCA
potential, respectively; r denotes the center-to-center distance
between two beads, or the distance of the bead center from the
confining cylinder minus σ. As a result, the monomer size a ≈
σ.
In addition, two neighboring beads are joined together

through the finitely extensible nonlinear elastic (FENE)
potential of the form
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where the molecular spring constant k = 30ε/σ2 and the
maximum bond length r0 = 1.5σ.25 This interaction ensures
chain connectivity.
We integrated Newton’s equations of motion using the

velocity Verlet algorithm with an integration time step δt =
0.01τ, where τ = σ(m/ε)1/2 is the characteristic time scale with
bead mass m = 1. A Langevin thermostat with the damping
constant 0.1τ−1 was used to keep the system at the fixed
temperature T = 1.0ε/kB, where kB is the Boltzmann constant
(see ref 19 for details). To obtain reliable chain statistics, we
carried out 200 independent simulations corresponding to
different initial chain conformations. We first performed 108

integration steps in order for the chain to equilibrate for a given

initial conformation; after equilibration, we ran additional 108

integration steps and obtained a data point every 104 steps.

III. RESULTS
A. Chain Ordering and Segregation. First, we have

examined chain structures under a varying degree of confine-
ment and longitudinal compression. In this work, the chain
structure is quantified in terms of the internal distance Rij =
[⟨R2(|i − j|)⟩]1/2, the direct distance between two monomers i
and j on the same chain, as a function of |i − j|, i.e., the contour
length in units of a, where ⟨...⟩ is an ensemble average or an
average over simulations (see section II for details). Figure 1
shows our simulation results for Rij for D = 14 (a) and D = 20
(b). Here and below, all lengths are measured in units of a,
unless otherwise stated. Different colors are used to represent a
varying degree of longitudinal compression (see the legend) or
a range of the volume fraction of monomers denoted as ϕ. This
consideration allows us to probe internal chain statistics under
various conditions. Here, we relate single-chain properties such
as Rij to interchain organization. The main advantage is that our
results will not be complicated by partial overlapping, which
would make each chain inhomogeneous, as illustrated in the
inset in Figure 1. To this end, we first trap each chain in a
closed cylinder of length L and calculate Rij. In our analysis of
interchain organization, two chains are confined in a cylinder of
length 2L and the overlap distance λ is measured, where λ is the
distance between the two farthermost monomers on different
chains as described in the inset of Figure 1 (also see Figure 2a
for an alternative interpretation).
A few distinct regimes are identified and labeled: the self-

avoiding walk (SAW) at length scales <ξ, random walk (RW) at
intermediate length scales, and linear regimes outside the RW
regime, which are depicted by dashed lines with different slopes
3/5, 1/2, and 1, respectively.26 In addition to the representative
dashed line, we have included a thin dashed line to highlight the
RW regime for some parameter choices in Figure 1a,bits
emergence is clear. For sufficiently small L [e.g., the blue curve
with symbols in (a)], however, the RW regime is not clearly
shown. This can be attributed to closed-confinement effects,
which tend to make Rij saturated beyond a special value of |i −
j|.
For moderate compression, as illustrated in the top panel, all

the three regimes are realized (e.g., the light blue curve in (a)
and the dark yellow curve in (b), both with symbols). For weak
compression (the first five curves in (a) and the first two curves
in (b), from the top), the RW regime is missing, while for
strong compression, the linear regime disappears (the curves
with filled symbols). The length scale ξ at which the crossover
from the SAW to RW or linear regime occurs naturally defines
structural units known as “blobs” and is smaller for larger ϕ
(the semidilute scaling law ξ ≈ ϕ−3/4 will apply to the confined
chain case as long as ξ < D);21 a few blobs are highlighted in
the top panel. Chain segments within a blob are not perturbed
by confinement or other segments outside the blob.21 In other
words, self-avoidance is unscreened.
The physical picture emerging from our results in Figure 1 is

as follows: for weak compression, linear ordering is well
preserved beyond ξ ≈ D, in the sense that the RW regime is not
realized, as in an open cylinder.21 As a result, ξ ≈ D is the only
crossover length scale that characterizes the chain conforma-
tion. The appearance of the RW regime for moderate
compression is a natural consequence of breakage of each
blob into smaller ones, as ϕ increases20 (also see ref 27 for a
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similar issue under spherical confinement). Compression
diminishes chain ordering in the sense that it makes “slower”
the crossover to the linear regime at some length scale denoted
as ζ∥ (>D). The crossover length ζ∥ defines new chain-ordering
units, referred to as “superblobs”, each consisting of randomly
packed blobs, as illustrated in Figure 1. Note the asymmetrical
shape of the superblob, which is elongated in the longitudinal
direction. In this case, linear ordering is preserved for length
scales > ζ∥ > D. As the chains continue to be compressed, ζ∥
increases and becomes comparable to the chain size eventually.
The linear regime then disappears.
The unique anisotropy of cylindrical confinement is

responsible for the crossover from the RW to linear regime
at the length scale ζ∥, which is missing under spherical
confinement.27 This necessitates the introduction of new
ordering units (called superblobs in this work). To capture
the anisotropy better, it proves useful to consider the internal
distance in the transverse direction Rij

⊥ = [⟨R⊥
2 (|i − j|)⟩]1/2,

where R⊥(|i − j|) is the transverse component of R(|i − j|). For
the entire parameter range shown in Figure 1, the RW regime is
not seen clearly in the transverse component (see the bottom
curves without symbols). Even in the RW regime, the confine
chain is transversely restricted.
Also included in the legend is the fractional overlap distance

λ/L, which describes interchain organization or “effective”
chain miscibility28 (recall that λ is the distance between the two
farthermost monomers on different chains). In all cases that

display the linear regime (curves with open symbols), the
chains are segregated completely (for weak compression) or up
to 80−90% (for moderate compression). However, the
emergence of the linear regime is not a requirement for
entropic segregation, as postulated in the literature.3,5,10 In fact,
the chains resist mixing effectively, even when the linear regime
is completely lost, as indicated by the bottom curve with
symbols in (a) or the fifth one in (b); chain miscibility is still
low around 30%. This observation is analogous to the recent
finding that two polymers in a melt can segregate in a
cylindrical box.29 (In the melt, ξ ≈ a and the SAW regime is
suppressed.) Similarly, it was shown earlier that ring polymers
in a melt segregate.30 This is understandable in light of the
recent finding that under cylindrical confinement ring polymers
segregate better than the corresponding linear chains.6

As the chains continue to be compressed against each other,
their linear regime will diminish in size and they mix or overlap
better. The free energy basis for the crossover from the mixed
to segregated state has been illusive. (See refs 10 and 20 for the
difficulty with a free energy approach and subsection B for our
attempt.) Crudely speaking, the free energy cost for chain
backfolding inside a superblob becomes comparable to that for
chain overlapping (also see ref 6 for relevant discussion). This
will enhance (effective) chain miscibility.
Finally, compare (a) and (b) for the sensitivity of interchain

organization to D, especially for ϕ ≈ 0.29 (the bottom curves
with symbols in both cases). In both cases, each chain is a RW

Figure 1. Internal distance of a confined chain Rij = [⟨R2(|i − j|)⟩]1/2 (solid lines with symbols) and its relationship with λ/L, the fractional overlap
distance between two chains (specified in the legend) for D = 14 in (a) and D = 20 in (b) in units of a. The dashed lines, with the slopes 3/5, 1/2,
and 1, depict the self-avoiding walk (SAW) within ξ, random walk (RW) at intermediate lengths,26 and linear regimes, respectively. If the confined
chain is weakly compressed longitudinally, it is linearly ordered beyond the blob size ξ ≈ D, as in an open cylinder, and the RW regime is missing.
For intermediate compression, as illustrated in the top panel, “superblobs” emerge as ordering units at some length scale denoted as ζ∥, within which
blobs are randomly packed (a few blobs are highlighted). For strong compression, the linear regime is suppressed (i.e., ζ∥ ≈ L). For the entire range
shown, the RW regime is not clearly seen in the transverse component Rij

⊥ = [⟨R⊥
2 (|i − j|)⟩]1/2 (the bottom lines without symbols). In all cases that

display the linear regime (solid lines unfilled symbols), the chains are (almost) completely segregated. Even when linear ordering is lost, they
segregate up to 70−80%, more so in a more asymmetrical space. Under anisotropic confinement, chain segregation in the RW regime is sensitive to
the aspect ratio k = D/2L.
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beyond ξ ≈ ϕ−3/4, which is roughly the same for both curves,
up to the entire contour length in the longitudinal direction.
However, λ/L is significantly different between the two cases. If
the chains are much segregated in (a), they are almost
completely mixed in (b). Thus, the smaller D case in (a), more
constrained in the transverse direction, shows a stronger
segregation tendency. Even for RW chains, segregation can be
sensitive to the aspect ratio of the confined space.
Our results in Figure 1 are statistical averages over many

realizations of chain conformations. To understand chain
miscibility beyond the average behavior, we have plotted in
Figure 2a the distribution of the center-to-center distance Lcc
for D = 20, denoted as P(Lcc), as a function of Lcc/2L. This is
normalized so that ∫ 0

2LP(Lcc) dLcc = 1. Here we have employed
the same color scheme used in Figure 1b to represent various
cases. Also note that the curves describing λ/L ≈ 0.5 (green
with symbols) and 2L = D (purple dashed) are highlighted with
a shade, since they represent special boundaries in the diagram
in (b). As shown in the figure, for the much segregated case
(curves without symbols in this plot), P(Lcc) has a peak at Lcc/
2L ≈ 0.5 or Lcc ≈ L, meaning that the two chains are well
segregated, consistent with our corresponding results for λ/L;
also, the width of the peak is narrow and is about 10% of the
cylinder length. Similarly, we have shown that P(Lcc) for D = 14
has a peak at Lcc ≈ L for the parameters used in Figure 1a (the
data not shown here).
In contrast, P(Lcc) for the much mixed case (the solid lines

with filled symbols) is broader. Nevertheless, the most probable
state corresponding to the peak of P(Lcc) is still in the

segregated regime, i.e., Lcc/2L ≈ 0.5, even when λ/L > 0.5.
However, there is no contradiction between the two pictures.
In the overlapping region, each chain is better aligned than in
the homogeneous region. This means that the farthermost
monomer in green can reach deeper into the right-half space
than indicated by P(Lcc). Furthermore, λ/L = 0.5 has special
meaning in chain miscibility. It separates between the
segregated and mixed regimes, as shown below. This seems
to be consistent with the miscibility picture based on λ/L (and
even with the picture P(Lcc) presents, as long as it is interpreted
correctly).
The three dotted or dashed lines in Figure 2a show how

P(Lcc) evolves as the confined space becomes symmetrical or as
the aspect ratio k = 2L/D approaches one. In our simulations,
we increased D from D = 20 up to 50, while keeping 2L = 50.
For D = 25, P(Lcc) is almost flat, meaning that the free energy
cost is comparable for random packing and for chain
overlapping. As k → 1, chain directionality is lost and P(Lcc)
becomes a Gaussian function centered at the origin (the purple
curve with a shade). The confined chains are most miscible for
k = 1, as supported by our miscibility diagram in Figure 2b (also
see below). However, this has to be understood with some
caution, since the distribution is broad. In this case, the most
probable state corresponding to Lcc = 0 (i.e., completely mixed)
does not necessarily coincide with what we expect from chain
miscibility on average. Nevertheless, the two chains under
isotropic confinement are well mixed, i.e., more than 90%.
Displayed in Figure 2b is an effective miscibility diagram in

the plane of x = RF/Deff and y = RF/ξ, where the fractional

Figure 2. (a) Distribution of the center-to-center distance Lcc of two confined chains P(Lcc) (a) and chain miscibility (b). (The miscibility diagram is
reproduced from ref 6 with modifications by permission of the Royal Society of Chemistry.) The color scheme in these plots is comparable to that
used in Figure 1b. For the well-segregated cases (solid lines without symbols), P(Lcc) has a narrow peak at Lcc/2L ≈ 0.5. On the other hand, P(Lcc)
for the much mixed cases (lines with filled diamonds) is broader. In the most miscible case k = D/2L = 1 (the dashed line in purple); P(Lcc) is a
Gaussian distribution centered at Lcc = 0. In the diagram in (b), Deff = D for linear chains (solid lines), while for ring polymers, Deff = D/√2 (dashed
lines).6 The dotted line with open squares describes the symmetrical case of k = D/2L = 1 for which y = 1.77x9/4. Beyond this, the confined space
resembles a closed “slit”. We have also included the theoretical prediction of the boundary curve y = 1.50x12/7 between the segregated and mixed
regimes3,10 (see open “diamonds”). The prefactor has been chosen so that the boundary curve collapses on one of the contours. It best fits the line
describing λ/L = 0.5. In addition, we note that the λ/L = 0 line is best fit by y = 1.15x (open inverted triangles).
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overlap distance λ/L is specified. Here, RF = constant × N3/5

(constant = 1.1 for linear and 0.87 for ring chains); Deff = D for
linear chains (solid lines), while for ring polymers, Deff = D/√2
(dashed lines).6 The agreement between the linear and ring
chain means that ring-topology-enhanced segregation can be
mimicked in the linear case by reducing D as D → D/√2 (see
ref 6 for details). The color schemes used in Figure 2a,b and in
Figure 1b are comparable to each other; for instance, the red
line represents λ/L = 0 and the blue line λ/L = 0.8. In earlier
scaling approaches,3,10 the mixed and segregated regimes are
separated by the curve y = x12/7. To test this, we have plotted
the curve y = 1.50x12/7 (see unfilled diamonds). The prefactor
has been chosen so that the boundary curve collapses onto one
of the contours. Our analysis indicates that the curve best fits
the line describing λ/L = 0.5. See the green curve with a shade
in Figure 2a for the corresponding P(Lcc). In view of this, this
fitting curve describes the crossover boundary between the
segregated and mixed regimes. According to our results in
Figure 1b, linear ordering is completely lost on this curve.
In addition, we note that the λ/L = 0 line is best fit by y =

1.15x (inverted triangles). The prefactor in this relation (>1) is
consistent with the observation that the confined chains resist
mixing, even when they are weakly compressed against each
other, and thus ξ is somewhat smaller than D. Finally, we have
included the curve y = 1.77x9/4 (the dotted line with squares)
that represents the isotropic case of D = 2L, for which the
chains are most miscible [recall P(Lcc) is Gaussian centered at
Lcc = 0]. For k ≈ 1, however, the notion of the overlap distance
becomes obscure, since the distinction between longitudinal
and transverse directions becomes arbitrary. Nevertheless, our
results in Figure 2a,b clearly indicate that the confined chains
are well mixed. Beyond this curve, however, the confined space
resembles a closed slit, as illustrated by a cartoon on the left in
Figure 2b.
B. Scaling Approach to Chain Segregation. Our results

for Rij in Figure 1 indicate that compressed chains resist mixing
as long as they are overall linearly ordered, i.e., ζ∥ ≪ L.
However, this finding is not as obvious to interpret as it may
seem, especially on a free energy basis. The main difficulty is
that a free energy approach (at the mean-field level) is not
always reliable and often leads to incorrect results.10,21 Even for
the case of a single confined chain, there has been some
confusion and the correct free energy approach, known as a
renormalized Flory approach, has only recently been obtained
(see ref 20 and references therein). Here we extend this
approach as a free energy basis for segregation in the linear
regime. To this end, we compare the two limiting cases:
“segregated” and “mixed,” as illustrated in Figures 3a and 3b,
respectively.
First, recall that the free energy of a single chain in an open

cylinder is given by

= +L
k T
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where A and B are (nonuniversal) constants of order 1 and g ≈
D5/3 is the number of monomer per blob.21 Recall all lengths
are estimated in units of a. Here L should be interpreted as the
longitudinal size of the confined chain, which coincides with the
cylinder length. The free energy in eq 3 leads to correct chain
sizes, and confinement free energy, and effective spring
constants. This approach is based on the assumption that the
confined chain is in the linear regime and remains valid unless

the chain is too much compressed longitudinally. Reference 20
suggests that it is valid for 0.5L0 < L < 1.2L0.

20

To understand the applicability of L( ) in eq 3 for 0.5L0 < L
< 1.2L0, note that at the lower bound, i.e., Llower = 0.5L0, ξ ≈
0.6D, if we take ξ = D for L = L0, as assumed in de Gennes’
scaling approach.21 The RW regime is not realized for this
range of L, i.e., the range 0.5L0 < L < 1.2L0 represents weak
compression, consistent with the illustrations in the top panel
in Figure 3. As L decreases, blobs will break into smaller ones,
but only for sufficiently small L, the RW regime will emerge, as
described in Figure 1. In this case, our free energy approach is
less accurate quantitatively. This is, however, a general feature
of a Flory-type approach, which is formulated in terms of a
single-order parameter, i.e., L in our case. Here, we argue that
this limitation will not invalidate our free energy comparison
between the segregated (a) and mixed states (b), since it will
influence both cases similarly.
By requiring that the free energy of segregated chains is

extensive with the number of chains for given ϕ, we can readily

Figure 3. Free energy basis for chain miscibility in the linear regime
(i.e., ζ∥ ≪ L); for visual clarity, the weakly compressed case (ζ∥ ≈ ξ) is
illustrated in the top panel. We compare the Flory free energy L( ) of
a segregated state (a) with that of a mixed state (b), as a function of L,
for D = 14 and 20; in both cases, N = 2500. To this end, we map (b)
onto (c) for which Deff = D/√2 is the effective diameter of an
imaginary tube enclosing each chain. As shown in this figure (the
bottom panel), mixing is disfavored by free energy. As L decreases, the
difference is diminished, and the chains are more miscible for smaller
L. Our Flory approach is known to be accurate for 0.5L0 < L < 1.2L0,

20

where L0 ∼ ND−2/3 is the unperturbed chain size in the equivalent
open cylinder case.21
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write down the free energy of the two chain system in (a), each
occupying a half space of length L, as

≈L L( ) 2 ( )seg linear (4)

On the other hand, a recent study suggests that under
cylindrical confinement a ring polymer can map onto a “parallel
connection” of two linear chains, each occupying an imaginary
cylinder of reduced diameter Deff = D/√2, as illustrated in (c).
On the basis of this, we argue that the free energy of two mixed
chains in (b) is well approximated by that in (c). For visual
clarity, the chains in de Gennes’ linearly ordered scaling regime
are illustrated in the top panel.
Following ref 6, we have

≈ ̂ + ̂L
k T
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L

N g D
B

D N g
L

( )

( / )

( / )mix

B

2

2

2

(5)

where Â = 213/6A and B̂ = 213/6B. Here, the parameters g, N, and
D in the second term on the right-hand side are for the
corresponding linear case.
In Figure 3 (the bottom panel), we compare the segregated

(a) and mixed states (b) as a function of 2L the cylinder length
using two choices of D: D = 14 and 20. Also, we have chosen A
= B = 1 as well as 2N = 5000. Even though we are mostly
interested in the compressed case L < L0, we include the
stretched case as well (L > L0). The bold line represents the
aforementioned L-range, 0.5L0 < L < 1.2L0. As shown in this
figure, segregation is favored by free energy. This is consistent
with our earlier finding that chains in the linear regime remain
segregated. As L decreases, the difference between the mixed
and segregated cases becomes smaller. Our results in Figure 3
are, however, less accurate for L < 0.5L0. Nevertheless, they
suggest that the chains become more miscible as 2L → D.
C. Bacterial Chromosomes and Confined Polymers.

How much do chromosomes resemble polymer chains
discussed in this work? When measured by fluorescence
correlation spectroscopy,31 an isolated E. coli chromosome
appears to consist of “structural units”, each containing
supercoiled plectonemes.31,32 Because of their topological
structure, they should repel one another and can be considered
as effective monomers;6 each monomer contains DNA
segments and bound proteins. This mapping is based on the
view that the action of DNA-binding proteins is local,3 and its
effect can thus be subsumed into monomers.6 (See ref 33 for
various DNA-binding proteins such as MukB.) The global
properties of such chain molecules such as their interchain
organization will not depend sensitively on this simplification,
owing to chain connectivity.21 (See ref 34 for a similar coarse-
grained, polymer model of eukaryotic chromosomes and ref 35
for coarse-graining in a more general context.)
If we use typical E. coli parameters such as the nucleoid

diameter D ≈ 5 and length L ≈ 28,36 and the number of units
N ≈ 200 (see also refs 3, 6, 31, and 32), we find ξ ≈ 3; here all
the lengths are given in units of the size of the structural unit
(≈70 nm). The E. coli chromosome is indeed in de Gennes’
linear ordering regime; i.e., it is weakly compressed or ζ∥ ≈ ξ ≈
D with its degree of ordering similar to that illustrated in Figure
3 (see also Figure 5 in ref 6, which shows how ring topology
enhances linear ordering). E. coli chromosomes in a dividing
cell can segregate spontaneously. This is driven by physical
effects chain molecules experience under anisotropic confine-
ment. It is thus expected to play a nontrivial role in the global

organization of chromosomes, largely independent of their local
properties.

IV. DISCUSSION
In conclusion, we have presented a physical picture of how
interchain organization is related to intrachain ordering under
cylindrical confinement, which has been illusive in the
literature. Our simulations presented here suggest that while
linear ordering ensures complete or almost complete
segregation, it is not required for segregation. Even when
each chain consists of randomly packed blobs along its entire
length, the chain is still restricted in the transverse direction
(see Figure 1). This anisotropy is responsible for chain
segregation up to 70−80%, outside de Gennes’ linear-ordering
regime.
Earlier studies indicate that the E. coli chromosome is linearly

ordered.23 In light of our results reported here, it is clear that E.
coli chromosomes in a dividing cell are in the entropic
segregation regime. Note that this conclusion is largely
independent of such molecular details as ring topology and
local packing of the chromosome. While the former effect can
be accurately mimicked in the linear case by adjusting cylinder
diameters,6 the latter can be subsumed into monomers in our
polymer model, since we are interested in much large-scale
properties.21,35

Technical advances now allow one to isolate, confine, and
manipulate single chromosomes in narrow channels.37,38 The
interrelationship between intrachain ordering and interchain
organization described in this work will be useful for further
exploiting the entropic mechanism3−8 and can serve as a model
for comparison with future experiments.
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