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Chromosomes in living cells are strongly confined but show a high level of spatial organization.

Similarly, confined polymers display intriguing organizational and segregational properties. Here, we

discuss how ring topology influences self-avoiding polymers confined in a cylindrical space, i.e.

individual polymers as well as the way they interact. Our molecular dynamics simulations suggest that

a ring polymer can be viewed as a ‘‘parallel connection’’ of two linear subchains, each trapped in

a narrower imaginary tube. As a consequence, ring topology ‘‘stiffens’’ individual chains about fivefold

and enhances their segregation appreciably, as if it induces extra linear ordering. Using

a ‘‘renormalized’’ Flory approach, we show how ring topology influences individual chains in the long

chain limit. Our polymer model quantitatively explains the long-standing observations of chromosome

organization and segregation in E. coli.
I. Introduction

Living cells adopt various strategies to pack, organize, and

partition their chromosomes, i.e. genetic materials that are highly

packed inside the cell with their natural size a few orders of

magnitude larger than the cell itself.1,2 How they are organized or

packed intramolecularly is not only crucial to such biological

processes as transcription and replication but also has non-trivial

impacts on their partitioning properties.1–8 Of particular interest

are the bacterial chromosomes, for which two competing views

have recently been put forward concerning their segrega-

tion:1,2,7–12 ‘‘assisted’’ and ‘‘spontaneous.’’ The former focuses on

protein-machinery, similar to mitotic spindles in eukaryotes that

pull the sister chromatids apart during mitosis.9,10 The other

view, in contrast, emphasizes roles of the physical properties of

the chromosome itself as a driving force for organization2,5,11–13

and segregation.2,7,11,12

Along with the latter view, it is worth emphasizing that chain

molecules such as DNA are distinct from a low-molecular weight

liquid in the sense that their macroscopic behavior is largely

insensitive to their molecular details (e.g. monomer shape),

owing to chain connectivity.14,15 This universality allows one to
aSupercomputing Center, Korea Institute of Science and Technology
Information, Yuseong-gu, Daejeon, 305-806, Korea. E-mail: yjung@kisti.
re.kr
bDepartment of Physics, Korea Advanced Institute of Science and
Technology, Daejeon, 305-701, Korea
cFAS Center for Systems Biology, Harvard University, Cambridge,
Massachusetts, 02138, USA
dDepartment of Physics and Astronomy, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1. E-mail: byha@uwaterloo.ca

† All of these authors made equal contributions.

This journal is ª The Royal Society of Chemistry 2012
focus on their large-scale behavior independently of molecular

details. A closely related point is that DNA-reshaping proteins

(such as MukB and HU in bacteria16,17 and histones in eukary-

otes18) can be considered as modifying locally the physical

properties of chromosomes; their effects have often been

subsumed into ‘‘structural units’’ or effective monomers of the

chromosome.2,12,18,19 Along this line, it has recently been sug-

gested that the role of these proteins is to create the right physical

conditions for spontaneous segregation of chromosomes,2 for

example, by local compaction of each molecule, which enhances

their segregation tendency.12,20 These studies attest to the

significance of interrelationships between the local action of

proteins and large-scale physics.

Similarly, intramolecular organization of individual chro-

mosomes in cells has also been studied.3–5,13,21–24 For instance,

the elastic filament model recently proposed5 views the

nucleoid as a homogeneous elastic medium. On the other

hand, it is now widely known that cylindrical confinement

induces linear ordering of a chain molecule, which would

otherwise remain disordered14 (also see ref. 2, 11, 25–28).

Because of the long-recognized interplay between local chain

packing and segregation tendency20 (see ref. 2 and 12 for

physical interpretations), it is desirable to present a model that

captures this feature.

Indeed, there has been increasing effort to explore such

models, in particular, polymer models of chromo-

somes.2,11,12,18,24,29–32 The main conclusions from these models

are: (i) (open) cylindrical confinement not only stiffens chain

molecules but also enhances the tendency of chain segrega-

tion;2,11,12 (ii) topological effects (ring or looping of the chains)

can facilitate spontaneous segregation,24,29–33 especially for the

spherically confined case.
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Fig. 1 Rescaled relaxation time, s/N2, as a function of D, obtained from

stretch-release and compress-release simulations. For the same N and D,

the ring polymer relaxes appreciably faster than the corresponding linear

chain (see the legend) and is much ‘‘stiffer’’. (Error bars are smaller than

the symbols used).
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In this article, we study how chain topology influences single

chain properties and their mutual interactions under confine-

ment, using molecular dynamics (MD) simulations and

a scaling approach; each polymer chain consists of N mono-

mers, trapped inside a cylindrical space of diameter D. Our

simulations suggest that such a ring polymer can be viewed as

a ‘‘parallel connection’’ of two linear subchains, each consisting

of N/2 monomers trapped in a narrower ‘‘imaginary’’ tube.34 As

a consequence of this interrelationship, in an open cylindrical

pore, ring topology ‘‘stiffens’’ individual chains about fivefold,

as if linear ordering is much enhanced. Also we construct

a ‘‘renormalized’’ Flory approach to ring polymers, similar to

the previous one for a linear chain,26 especially for calculating

their elasticity and confinement free energy in the long-chain

and large-D limit.

The imaginary-tube concept proves to be useful for under-

standing how ring topology enhances segregation tendency. Its

effect is shown to be equivalent to trapping each subchain in

a narrower tube, and as a result, ring polymers constrain and

thus repel each other better than in the linear case. This is in

contrast to the spherically-confined case, where linear chains

intermingle, while ring polymers compartmentalize.24,29–31

Using polymer models (with ring topology), we show how

E. coli chromosomes are intra- and inter-molecularly organized.

In particular, we interpret the observations of linear

ordering4,5,21,22 and segregation4,6,7 of the chromosomes (see also

ref. 1 and 2 and those therein), and highlight the effects of ring

topology.

This article is organized as follows. In section II, we outline the

simulation procedure. In section III, simulation results are pre-

sented and the effects of chain topology are discussed, followed

by a scaling analysis of chain confinement and topology. A

polymer basis for both intra- and inter-chain organization of

E. coli chromosomes is presented in section IV.

II. Molecular dynamics (MD) simulations

In our MD simulations, we use a bead-spring model of a (ring)

polymer, trapped inside a cylindrical pore. Beads (among

themselves and with the confining walls) interact via the fully-

repulsive Weeks-Chandler-Andersen (WCA) potential,35 given

by

U
WCA

ðrÞ ¼ 43

��
s

r

�12
�
�
s

r

�6
þ 1

4

�
for r\21=6 s

0 otherwise

;

8><
>: (1)

where 3 and s represent the strength and range of the WCA

potential, respectively. Finally, r denotes the center-to-center

distance between two beads, or the distance of the bead center

from the confining cylinder minus s. As a result, the monomer

size a z s.

The bond between two neighboring beads is modeled by the

finite extensible nonlinear elastic potential of the form

U
FENE

ðrÞ ¼ � 1

2
kr 20 ln

"
1�

�
r

r0

�2#
; (2)

where the molecular spring constant k ¼ 303/s2 and the

maximum bond length r0 ¼ 1.5s.36
2096 | Soft Matter, 2012, 8, 2095–2102
Newton’s equations are integrated with the velocity Verlet

algorithm with a time step dt ¼ 0.01s0, where s
0
¼ s

ffiffiffiffiffiffiffiffiffi
m=3

p
represents the characteristic time scale with bead mass m ¼ 1. A

Langevin thermostat is used to keep the system at the fixed

temperature T ¼ 1.03/kB, where kB is the Boltzmann constant.

The damping constant 0.1s�1
0 is used in all directions (see ref. 27

for details). Finally, we carry out 2000–10 000 independent

simulations to obtain ensemble averages, i.e. averages over all the

different simulations.
III. Results

A. Relaxation dynamics: chain topology

First, we have examined the time evolution of a ring polymer

confined in an open cylindrical pore of diameter D, using two

different initial conditions: (i) stretch-release and (ii) compres-

sion-release of the chain. For the former case, the chain is

initially stretched much beyond its equilibrium conformation

and then released. For the latter case, it is initially compressed by

about 30% of its equilibrium size and then released. Here, we do

not attempt to include hydrodynamic interactions (HI), but we

concentrate on extracting information about chain elasticity.

Thus the neglect of HI effects will not limit the applicability of

our results. In principle, the earlier theoretical approach

proposed in ref. 27 can be extended to examine HI effects.

Let L(t) be the longitudinal size of a confined chain and L0 its

equilibrium value (see Fig. 1). For a linear chain, L0 � ND�2/3.14

As evidenced later, this scaling behavior works for a ring polymer

too. Clearly, hL(t)i / L0 as t / N, independently of the initial

condition, where h.i is an ensemble average. To study chain
This journal is ª The Royal Society of Chemistry 2012
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relaxation, we have examined the large-t behaviour of hL2(t)i �
hL(t)i2, which is well approximated by a single-exponential

decay, i.e. hL2(t)i � hL(t)i2 � e�t/s, as in the case of linear

chains.27,28 The relaxation time s can be obtained from the slope

of a linear fit to large-t data for this quantity in a semi-log plot.27

Displayed in Fig. 1 are the resulting reduced relaxation times s/
N2 of a ring polymer in a log-log plot as a function of the pore

diameter D for a few choices of N (N ¼ 512, 724, and 1024).

Superimposed are our results for linear chains (N ¼ 512 and

1024). The results in Fig. 1 show that s�N2D0.9 for both ring and

linear chains. This finding confirms the recent numerical results

for linear chains26–28 but deviates from the earlier theoretical

result (in the absence of HI effects), s � N2D1/3, based on the

much-celebrated ‘blob’-scaling approach.25 The discrepancy has

been extensively examined and attributed to finite chain-size

effects.26–28 The study in ref. 28 even suggests that the asymptotic

scaling limit is hard to reach with the current computational

power. In this connection, it is worth mentioning that the elastic

response of an unconfined self-avoiding chain suffers from

similar finite-size effects.37 The force-extension relation based on

the blob-scaling approach is predicted to be realized forNT 105.

Thus numerical and blob-scaling approaches need to be

compared with caution.

Interestingly, theD exponent is the same for the ring and linear

chains. The main difference between the two cases is through the

x (¼ D) or y (¼ s/N2) intercepts. This implies that the difference

can be taken into account by appropriately rescaling D andN, as

detailed below, even though linear and ring polymers have

different topology. This is a unique feature of cylindrical

confinement and relies on the fact that individual chains and the

way they interact can easily be modulated by changing D.

In order to study systematically the effects of chain topology

on relaxation dynamics, we have explored a few strategies for

mimicking ring topology and compared them in Fig. 2(a)–(c). In

all cases, a ring polymer is considered as a parallel connection of

two linear ‘‘subchains’’ (labelled in two different colors in Fig. 2),

each consisting of N/2 monomers.

First, assume that the two subchains are ‘‘transparent’’ to each

other, as illustrated by the cartoon on the left in Fig. 2. This

picture is equivalent to using the rescaling N / N/2 in s/N2 for

the ring polymer. Fig. 2(a) shows the resulting relaxation time as

a function of D. However, the data for the linear and ring chains

do not collapse very well onto each other.

One way to include the subchain repulsion is to trap each

subchain in an ‘‘imaginary tube’’ of reduced diameter, as illus-

trated in the cartoon on the right in Fig. 2. One plausible choice is

D=
ffiffiffi
2

p
, since this accounts for the reduced cross-sectional area

each subchain chain occupies. When this imaginary-tube concept

is introduced in Fig. 2(b) (in addition to the N rescaling in (a)),

the agreement is somewhat better than in Fig. 2(a). As evidenced

below, this strategy works well for large D.

Our last strategy is to use an effective diameter Deff in our D

rescaling by noting that monomers do not fill the cylinder

uniformly in the direction normal to the symmetry axis of the

cylinder. The effective diameter Deff is defined as two times the

weighted average of the normal distance from the symmetry axis

r (not to be confused with r in section II) with respect to the

monomer density r(r). It can be obtained as Deff ¼ 2rrmax
in the
This journal is ª The Royal Society of Chemistry 2012
following relation:

ðrend
rrmax

rðrÞrdr ¼
ðreff
rrmax

rmaxrdr, where rmax is the

maximum value of r(r); rrmax
and rend are the positions at r(r) ¼

rmax and r(r)¼ 0, respectively. As it turns out, this is an excellent

choice for collapsing the linear and ring cases, especially for

small D.

Fig. 3 shows a linear relationship between Deff and D for both

ring and linear chains for D ( 10: Deff z 0.74D h Dring for the

ring chain and Deff z 0.64D h Dlinear for the linear chain.

Because of the subchain repulsion,Deff is somewhat larger for the

ring polymer, as long asD is not too large. This indicates that the

diameter is overcorrected in Fig. 2(b). According to our results in

Fig. 3, the correctD rescaling isDlinear ¼ 1ffiffiffi
2

p Dring. (Alternatively,

we can rescale the diameter for the linear case as

D/D
1ffiffiffi
2

p Dring

Dlinear

zD
1ffiffiffi
2

p 0:74

0:64
z 0:82D, while keeping the

diameter for the ring case unchanged.)

Fig. 2(c) shows how the linear and ring cases map onto each

other when this effective rescaling is used. The excellent agree-

ment suggests that ring topology can be most accurately

mimicked by the rescaling: Deff /
1ffiffiffi
2

p Deff (together with

N/
1

2
N). Note this works for any D; for small D,Dring >Dlinear,

but for large D, Dring z Dlinear. The effects of chain topology are

also manifested in the effective spring constant keff. Letting klinear
and kring be the effective spring constant of linear and ring

polymers, respectively, our results in Fig. 2(c) and Fig. 3 suggest

that for D ( 10

kring

klinear
¼ 4

�
Dlinear

Dring

� ffiffiffi
2

p
�0:9

z 4

� ffiffiffi
2

p
� 0:64

0:74

�0:9

z 4:81: (3)

In otherwords, kringz 4.81klinear. AsD increases, however, this

relationship becomes less sensitive to the aforementioned feature

of the ring polymer ðthus D/
1ffiffiffi
2

p D worksÞ and is given by

kring z 4
� ffiffiffi

2
p 	0:9

klinear z 5:46� klinear.
B. Scaling approach to a ring polymer

Our simulation results suffer from finite-size effects.26–28 Here, we

construct an analytical approach to a ring polymer for N [ 1

(or N / N) and D [ a. In this case, we expect r(r)/rmax to be

similar for both linear and ring polymers. This means that a ring

chain maps onto a parallel connection of two subchains, trapped

in an imaginary tube of diameter
1ffiffiffi
2

p D.

Recently, Jun et al.26 proposed a renormalized Flory approach

to a linear self-avoiding chain under cylindrical confinement,

which correctly reproduces L0 (the average chain size) and keff
(the effective spring constant) predicted by the de Gennes’ blob

picture.14,25 The confinement free energy of a linear chain as

a function of the longitudinal chain size L is given by

F linearðLÞ
kBT

¼ A
L2

ðN=gÞD2
þ B

DðN=gÞ2
L

; (4)
Soft Matter, 2012, 8, 2095–2102 | 2097
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Fig. 2 Effects of ring topology and imaginary tubes: a few strategies for collapsing the data for linear and ring chains, thus mimicking ring topology. In

all these cases, the ring polymer is considered as a parallel connection of two subchains labelled in two colors; this is equivalent to usingN/N/2 in s/N2

for the ring polymer. As indicated in the box, (a) D / D, (b) D/D=
ffiffiffi
2

p
, and (c) Deff/Deff=

ffiffiffi
2

p
, where Deff is the effective diameter (see the text for

details). In (b) and (c), each subchain is assumed to occupy an imaginary tube of reduced diameters, D=
ffiffiffi
2

p
and Deff=

ffiffiffi
2

p
, respectively. The agreement

between the linear and ring polymers is better in (c) than in (a) or (b) for theD range shown in the figure. Qualitatively speaking, the ring polymer makes

better use of the confined space, exploring a larger cross-sectional area, than the corresponding linear chain, and each subchain occupies a tube of

diameter somewhat larger than indicated in (b). For the asymptotic limit of D [ a, however, the mapping in (b) is expected to work better.
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whereA and B are (non-universal) constants of the order of 1 and

g z D5/3 is the number of monomers per compression blob (i.e.

an ‘‘imaginary sphere’’ beyond which self-avoidance is

screened14). Here and below, lengths are estimated in units of a,

unless otherwise stated. The free energy in eqn (4) leads to L0 ¼
Fig. 3 The effective diameter Deff for the linear and ring polymers.

Crudely speaking,Deff is two times the average of r weighted with respect

to the monomer density r(r), where r is the normal distance from the

symmetry axis of the cylinder. Our results here show how Deff deviates

from the geometrical diameter D.

2098 | Soft Matter, 2012, 8, 2095–2102
(B/2A)1/3D(N/g) z (B/2A)1/3ND�2/3 h Llinear. The confinement

free energy at L0 is F 0
linear ¼



3=22=3

�
B2=3A1=3ðN=gÞ and

keff ¼
�

v2

vL2
F linear

�
L0

¼ 6AN�1D�1=3 h klinear (in units of

kBT).
26,27 Note that this approach remains valid unless the chain

is compressed too much longitudinally26 (also see Fig. 5 and

related discussions).

To extend our scaling approach to the case of a confined ring

polymer, let parameters with a hat be the renormalized ones that

correctly capture effects of ring topology. Then the confinement

free energy can be written as

F ringðLÞ
kBT

¼ 2

"
A

L2

ðN̂=ĝÞD̂ 2
þ B

D̂ðN̂=ĝÞ2
L

#

zÂ
L2

ðN=gÞD2
þ B̂

DðN=gÞ2
L

; (5)

where Â¼ 213/6A and B̂¼ 21/6B. Note here that the parameters g,N,

and D in the second term on the right hand side are for the cor-

responding linear case. The equilibrium size, at which F is mini-

mized, is given by Lring ¼ (B̂/2Â)1/3D(N/g) z 2�2/3(B/2A)1/3

ND�2/3 z 0.63Llinear (recall Llinear ¼ (B/2A)1/3D(N/g)).

The confinement free energy at Lring then reads

F 0
ring ¼ ð3=22=3ÞB̂2=3Â1=3 ðN=gÞz25=6 � ð3=22=3Þ B2=3A1=3 ðN=gÞ

¼ 25=6 � F 0
linear (in units of kBT).

38 This means that ring topology
This journal is ª The Royal Society of Chemistry 2012
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almost doubles the confinement free energy; trapping each

subchain in a tube (see Fig. 2) requires extra free

energy. Furthermore, kring ¼
�

v
2

vL2
F ring

�
Lring

¼ 6Âg=ND2 z 213=6

�6Ag=ND2 ¼ 213=6klinear (in units of kBT) or kring/klinear z 4.49.

This deviates somewhat from the earlier result obtained for finiteN

andD. The main source for this discrepancy is the sensitivity of keff
(especially its D dependence) to finite-size effects.26–28

The free energy F ring implies that chain back-folding (over

length scales >D) is costly. Accordingly, it supports the blob

picture in which a linear chain under cylindrical confinement can

be viewed as a linear string of blobs.14 This picture also applies to

each subchain of a ring. Linear ordering of these blobs is

a natural consequence of a high free-energy penalty for back-

folding (see section IV for its implications). It also has physical

consequences on chain miscibility or the way two confined chains

interact, as detailed below.
C. Chain miscibility under cylindrical confinement

Our results for single chains have implications for the spatial

organization of two (linear or ring) chains in a cell-like, closed

cylindrical space. First, imagine compressing two linear chains

against each other with an external force f, as illustrated in Fig. 4.

It is easy to see that for small f the chains remain segregated. This

can be understood as follows: chain segments in an overlapping
Fig. 4 Miscibility diagram displaying the fractional overlap distance, l/

L (¼ 0.1, 0.2, 0.3,.). The dotted lines describe ring polymers in a tube of

effective diameter Deff ð¼ D=
ffiffiffi
2

p
Þ, whereas the solid lines represent

equivalent linear chains in a tube of diameterD. The two sets of diagrams

collapse well onto each other. When chains are compressed, the reduced

monomer density becomes more uniform (the chains are much

compressed even for l/Lz 0). As a result, the mapping in Fig. 2(b) works

well. Note that the two chains are practically segregated much beyond the

shaded region (e.g. up to 50% of mixing). We predict that the E. coli

chromosomes are in the spontaneous segregation regime.

This journal is ª The Royal Society of Chemistry 2012
region can be considered as two parallel subchains, resembling

a (costly) ring polymer. This means that mixing is disfavored for

weak f. This picture will break down if the chains continue to be

compressed. The energy cost for self back-folding in the homo-

geneous or segregated region becomes comparable to that for

chain overlapping. This will enhance chain miscibility.12

It is gratifying that these arguments apply to the case of two

compressed ring polymers. Ring topology in this case will change

the energetics of overlapping and compression, but the qualita-

tive picture of the linear case will remain applicable to the ring

case.

We have plotted our simulation results for the fractional

overlap distance l/L in the diagram in Fig. 4 for both the ring

(dotted lines) and linear (solid lines) cases; l is the distance per

chain between the two farthermost monomers belonging to

different chains in the overlapping region. Here RF � N3/5 is the

Flory radius or the chain size in an unconfined space and x is the

blob size or the self-avoidance screening length.14 Within each

blob, self-avoidance dominates chain statistics; outside x, effects

of the cylindrical wall and compression will be felt by the chain.

In an open cylinder x z D. The diagram is based on our

convention of x ¼ f�3/4, where f is the volume fraction of

monomers14 and the numerical prefactor is set to unity.39 Also,

we choose RF ¼ const. � 1.11N3/5 in units of a, where the

constant is introduced so as to account for the difference between

linear and ring chains; const. ¼ 1 for the former and 0.79 for the

latter, which coincides with the ratio of the radii of gyration of

the ring and linear chain. Finally, the numerical prefactor 1.11 is

included to ensure the best fit to the simulation data.

Our diagram in Fig. 4 extends our previous work for linear

chains2,12 to the case of ring polymers. To understand the

diagram, imagine crossing the miscibility diagram from left to

right along a horizontal line. The fractional overlap distance l/L

decreases, i.e. the two chains become more segregable. This is

equivalent to increasing the aspect ratio of the confining cylin-

drical box, while keeping the volume of the box fixed (thus the

blob size x should remain constant).40 Since the effect of ring

topology is equivalent to reducing the diameter of the confining

cylinder as explained in Fig. 2, ring polymers will always segre-

gate better than linear chains.

In the shaded region below the bottom curve in red, chains

remain completely segregated; note that on the curve, the chains

are compressed against each other but resist mixing,12 resembling

touching ‘cigars’.41 Our diagram in Fig. 4 indicates that the

boundary between the segregated and mixed regimes is a cross-

over for both linear and ring chains, not a sharp transition.41

Chain miscibility is directly related to the degree of linear

ordering each chain retains. As the two chains continue to be

compressed against each other, each chain will lose linear

ordering gradually. This explains the crossover behavior in our

diagram in Fig. 4.

To collapse the two sets of diagrams, we have rescaled the

diameter for the ring case as D/
1ffiffiffi
2

p D. Note this is consistent

with the D rescaling used in Fig. 2(b), but the agreement is

excellent. The additional factor discussed in Fig. 3 (i.e. Dring T

Dlinear) turns out to be insignificant when the chains are much

compressed. In this case, r(r) tends to a constant for both linear
Soft Matter, 2012, 8, 2095–2102 | 2099
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and ring polymers, as our simulation data support (data not

shown). As in the spherically confined case or in a unconfined

space,11 we find that ring topology enhances the segregation

tendency under cylindrical confinement, as if it enhances linear

ordering of the chain.
Fig. 5 Ring topology and linear ordering of a polymer in a closed

bacterial cell-like geometry of length L and diameter D. A snap shot of

a typical chain conformation is shown. The beads are colored progres-

sively according to the color bar in the middle. We have chosen the

parameters to mimic the E. coli chromosome. For a ring polymer (the

upper figure), only one subchain is colored, with the other in a varying

grey scale. A linear subchain constructed with the same rescaling used for

Fig. 4, i.e. D/D=
ffiffiffi
2

p
(the lower figure). We exaggerated the cylinder

diameter in this case so that it matches with that in the ring case. Because

of the D rescaling, the degree of linear ordering is comparable in the two

cases.
IV. Implications for bacterial chromosomes

To understand the physical properties of bacterial chromosomes

and their functions, we need a simple, quantitative model that

makes experimentally testable predictions. As a specific example,

here we focus on the circular E. coli chromosome. Our view is

that the E. coli chromosome is a ‘‘string of structural units’’,

strongly confined in a closed space.2,11–13,42 This is based on the

following molecular and biological details: (i) Physical properties

of the chromosome are determined not only by DNA strands but

also by various proteins that interact with the DNA (see ref. 2, 17

and 43). (ii) When measured by fluorescence correlation spec-

troscopy,44 an isolated E. coli chromosome appears to consist of

‘‘structural units.’’ Each structural unit contains supercoiled

plectonemes.45 Physically, they are topologically constrained and

should repel one another. (iii) Even inside the cell, the polymeric

nature of bacterial chromosomes is well preserved, as evidenced

in the subdiffusive dynamics of bacterial chromosomal loci.46 In

other words, chain connectivity plays an important role in

chromosome relaxation in the viscoelastic cytoplasm.

Below we use the beads-on-string model of a chromosome,

where each bead represents a structural unit. With this simplifi-

cation, we can interpret recent experimental observations. Note

that similar coarse-grained models have been used in the litera-

ture11,12,18,42 (also see the endnote19).
A. Intramolecular organization of E. coli chromosomes

There have been a number of studies of the organization and

dynamics of in vivo bacterial chromosomes using fluorescence

imaging.4,5,21,22 Some of the key observations relevant to us

include: (i) a single chromosome before the onset of DNA

replication is linearly ordered along the long axis of the cell (with

a stretch of segments connecting the two poles of the packed

chromosome),4,5,21,22 and (ii) the distribution of the interloci

distance follows the linear relation s2D � DL � Lcell, where s
2
D is

the variance of the interloci distance, DL, and Lcell is the cell

length.5

Linear ordering of a chain molecule in a cylindrical space is

now well understood.2,11,13 We can also understand this by

considering the free energy cost for chain back-folding under

cylindrical confinement, as discussed in section III. Linear

ordering of a ring polymer can also be understood similarly if we

divide the ring into two linear subchains, as illustrated in Fig. 5,

where we show a typical chain conformation from our simula-

tions. The beads are colored progressively according to the color

bar in the middle. We have chosen the parameters to mimic the E.

coli chromosome (see subsection B for details): the number of

structural units nd ¼ 200, the diameter D ¼ 4.8, and the cell or

cylinder length L ¼ 28 (in units of structural units). For these

choices, L0 z 41. (a) For a ring polymer (the upper figure), only

one subchain is colored, with the other one in varying grey scale.

Even under longitudinal compression as in E. coli, linear
2100 | Soft Matter, 2012, 8, 2095–2102
ordering of the subchain is well preserved. (b) The lower figures

shows a single, linear subchain constructed with the same

rescaling used for Fig. 4 or Fig. 2(b), i.e. D/D=
ffiffiffi
2

p
. This implies

that our rescaling approach works even for the case of

a compressed chain in an E. coli cell-like geometry.

The second observation s2D � DL� Lcell is also closely related

to the linear ordering of the chromosome. To see this, note that

the effective spring constant of a ring polymer under cylindrical

pore is given by keff � 1/N � 1/L.26,28 Thus, as long as the linear

ordering is preserved, s2D � 1/keff � DN � DL as measured by

Wiggins et al.5 Furthermore, a recent study indicates s2D � L for

a strongly confined chain,28 a natural consequence of chain

stiffening due to confinement. Although the scaling relationship

for s2D can be understood straightforwardly, its proportionality

constant has to be measured experimentally, since it will depend

on many unknown (biological) details. Nevertheless, it is

important to realize that the scaling relationship of the experi-

mental data can be described by our simple polymer model.
B. Miscibility diagram and E. coli

Using the miscibility diagram in Fig. 4, we can quantitatively

address the extent to which the ring topology of E. coli chro-

mosomes will enhance their segregation tendency by revisiting

the recent analysis in ref. 2 and 12. To this end, we summarize the

measured parameters for E. coli and its chromosomes as follows.

First, the E. coli chromosome consists of about 4.6 � 106 base

pairs (bp), confined inside an overall-cylindrical space called the

nucleoid,45 with diameter D z 0.24 mm and length L z
1.39 mm2,45,47 (see Fig. 1 in ref. 45 as well as the relevant point in

ref. 48). Second, the size of the structural unit has been estimated

by Krichevsky et al. to be d z 70 � 20 nm.44 Third, recall RF ¼
const. � 1.11dn3/5d , where nd is the total number of structural

units of the chromosome and const. ¼ 1 for a linear chain and
This journal is ª The Royal Society of Chemistry 2012
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0.79 for a ring. Finally, the number of base pairs/domain is in the

range of g � 10–100 � 103 bp.2,49 Thus, for 4.6 � 106 bp for the

chromosome, nd can be as small as 92 for g¼ 50� 103 bp44 and as

large as 230 for g ¼ 20 � 103 bp.49 For the latter choice, it is

natural to choose dz 50 nm, which is the lower bound for d and

approximately corresponds to a close pack of such domains.

If we adopt d ¼ 70 nm and g ¼ 50 � 103 bp (close to the upper

bound of 100� 103 bp) from ref. 44, we obtain xz 6.88 and yz
17.37,48 corresponding to about 20% overlap for the linear chain

case butz 10% for the ring polymer case. If we choose g¼ 100�
103 bp instead (for a more densely packed DNA in the chro-

mosome), we obtain z10% overlap for the linear chain case but

much reduced z2% for the ring polymer case. This analysis

illustrates not only the significance of ring topology but also the

interplay between packing and segregation: the chromosomes

segregate better when more tightly packed, consistent with

experiments.20 Note that the two chains are practically segre-

gated much beyond the shaded region (e.g. up to 50% of mixing)

in the diagram in Fig. 4. Our analysis shows that the E. coli

chromosomes are in the spontaneous segregation regime.

Our analysis provides a quantitative basis for the scaling

picture of some aspects of topology-enhanced segregation (see

Fig. 4 in Supplementary Information of ref. 2), which indicates

enhanced segregation due to chain topology.
V. Conclusions

In this work, we have established an interplay between chain

topology and confinement. Our results suggest that a ring poly-

mer consisting of N monomers in a cylindrical pore of diameter

D can be viewed as a ‘‘parallel connection’’ of two linear chains,

each bearing N/2 monomers in an imaginary tube with a reduced

diameter

�
z

1ffiffiffi
2

p D for D=a[ 1

�
. As a result, ring topology

‘‘stiffens’’ a confined chain about fivefold, as demonstrated in

Fig. 2.

Furthermore, this interrelationship is also manifested in the

miscibility diagram in Fig. 4, which compares the effects of chain

topology and confinement on chain miscibility. Adding ring

topology to a linear chain is equivalent to reducing the diameter

D to Deff ¼ 1ffiffiffi
2

p D. In other words, a topological repulsion under

cylindrical confinement can be translated into an equivalent

confinement-induced repulsion.

Also the picture of such a confined chain as a linear array of

blobs14,25 is consistent with the recent observation of a linearly

ordered E. coli chromosome in the nucleoid.5 In our rescaling

approach, the free energy penalty for chain back-folding (beyond

the blob size) is similar to the extra confinement free energy

caused by ring topology. It thus offers polymer (more micro-

scopic) insights into linear ordering of chromosomes in rod-

shaped bacteria (e.g. E. coli).5 A closely related point is the

picture of confined polymers as effective ‘‘repellers’’—more so if

more ordered. It thus supports the ‘‘internal’’ or spontaneous

mechanism of chromosome segregation,2,6,7,11,12 which relies on

the physical properties of chromosomes themselves.

Despite molecular details being left out in our study, it is clear

that the physical effects arising from confinement and chain

topology play non-trivial roles in shaping individual
This journal is ª The Royal Society of Chemistry 2012
chromosomes and their segregation, especially in elongated

bacterial cells. Here, a direct experimental test of our model will

be important for understanding the physical nature of the

chromosome.
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