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Summary

How cells control their size and maintain size homeostasis
is a fundamental open question. Cell-size homeostasis has
been discussed in the context of two major paradigms:
‘‘sizer,’’ in which the cell actively monitors its size and trig-
gers the cell cycle once it reaches a critical size, and
‘‘timer,’’ in which the cell attempts to grow for a specific
amount of time before division. These paradigms, in
conjunction with the ‘‘growth law’’ [1] and the quantitative
bacterial cell-cycle model [2], inspired numerous theoret-
ical models [3–9] and experimental investigations, from
growth [10, 11] to cell cycle and size control [12–15]. How-
ever, experimental evidence involved difficult-to-verify as-
sumptions or population-averaged data, which allowed
different interpretations [1–5, 16–20] or limited conclu-
sions [4–9]. In particular, population-averaged data and
correlations are inconclusive as the averaging process
masks causal effects at the cellular level. In this work,
we extended a microfluidic ‘‘mother machine’’ [21] and
monitored hundreds of thousands of Gram-negative Es-
cherichia coli and Gram-positive Bacillus subtilis cells un-
der a wide range of steady-state growth conditions. Our
combined experimental results and quantitative analysis
demonstrate that cells add a constant volume each gener-
ation, irrespective of their newborn sizes, conclusively
supporting the so-called constant D model. This model
was introduced for E. coli [6, 7] and recently revisited [9],
but experimental evidence was limited to correlations.
This ‘‘adder’’ principle quantitatively explains experimental
data at both the population and single-cell levels,
including the origin and the hierarchy of variability in the
size-control mechanisms and how cells maintain size
homeostasis.

Results

At the Population Level, New Experimental Data Confirm
the Growth Law
Population-level parameters derived from our single-cell data
followed established patterns for microbial growth known as
the growth law [1]: the average newborn cell volume hvbi
increased and the average generation time htdi decreased,
respectively, as the nutrient-imposed growth rate hli =
h1/tdi ln2 increased (newborn refers to the cells right after
birth; Figure 1A). The newborn cell volume depended expo-
nentially on the nutrient-imposed growth rate (hereafter
referred to as growth rate, unless otherwise noted), hnbi = A
exp(Bhli), in quantitative agreement with the growth law [1]
(Figure 1C, red symbols and line; A is the y intercept, and B
is the slope of the red line). Moreover, newborn length hsbi
and width hwbi, averaged over the entire set of individual
cells in each growth condition, also showed an exponential
dependence on the average growth rate hli (Figure S1A avail-
able online).
The size of individual cells also increased exponentially as

s(t) = sb2
at (where a is the instantaneous elongation rate),

and. their width did not change significantly between birth
and division (Figure S1B; [21]; hereafter, we use size and vol-
ume synonymously). The average instantaneous elongation
rate was identical to the average growth rate of the population
since h1/s ds/dti = hai ln2 = h1/tdi ln2 = hli.

At the Single-Cell Level, Individual Cells Show Systematic
Deviations from the Growth Law
Individual cells, however, exhibited intrinsic variability even
under constant growth conditions, and we asked whether
the quantitative relationship between the average size and
the average growth rate also applied at the single-cell level.
For example, the SDs of the growth rate and the newborn
cell size were w15% and w14% of their respective means
(Figure 1B). Therefore, when the growth-rate distributions for
two different growth conditions partially overlapped as shown
in Figure 1B, individual cells in the overlap region could have
had the same growth rate l = (ln 2)/td. Thus, if the growth
rate solely defined the cell’s growth physiology, individual
cells with the same l should have had on average the same
size as described by the growth law hnbi = A exp(Bhli). We
found this was not the case. For all seven growth conditions,
the size versus growth rate measured from individual cells,
nb versus l, systematically deviated from the population-level
growth law (Figure 1C, blue symbols and lines versus red sym-
bols and line). This deviation indicates that, at the single-cell
level, the size of individual cells is controlled by a mechanism
that is different from the growth law hnbi = A exp(Bhli) (see
below).

Correlations of Growth and Size Parameters Contradict
Both Sizer and Timer Models
The newborn cell size (sb) and the generation time (td) of indi-
vidual cells were negatively correlated (Figure 1D, left), which
excluded the timer model of cell-size control. Otherwise, we
would have seen constant td with respect to sb. Furthermore,
timer models showed instability when accounting for the
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observed exponential growth of individual cells (Supplemental
Information). The fact that cells born small take on average
more time before they divide is in principle consistent with a
sizer model. However, the strong positive correlations be-
tween the dividing size sd and sb (Figure 1D, right) ruled out
the model because the sizer predicted that sd should be
constant.

Cells Instead Employ ‘‘Adder’’ Principle
Our data instead support a model in which the size added
between birth and division (D = sd 2 sb) is constant for given
growth conditions. We found that, although D varied sig-
nificantly between growth conditions and also between
individual cells, D was on average constant irrespective of
the newborn size sb in each growth condition (Supplemental

Information). In fact, the entire conditional distribution
r(Djsb) had the same shape as the nonconditional distribu-
tion r(D), and distributions of D from different experimental
conditions collapsed onto a single curve when rescaled by
their mean (Figure 2, right; Figure S2). The distribution of
the size added in each generation, D, was thus independent
of the newborn cell size.
We also confirmed the constancy of D in two additional

E. coli strains from our previous work (K12 MG1655 and
B/r) [21] (Figure S3) and E. coli size mutants (Dpgm and
ftsA*) [16]. Furthermore, we also confirmed the validity of
the model in the Gram-positive B. subtilis (Figures 2B
and 2C).
The collapse of the conditional distributions in Figure 2

established the constant D model, or adder (as opposed to

A B

C

D

Figure 1. Growth Law at the Population Level and Systematic Deviations at the Single-Cell Level

(A) Top: time series of a typical cell growing in a nutrient-rich medium. Bottom: sample images of dividing E. coli cells in steady-state exponential growth at
37!C in seven different growth media.
(B) Partially overlapping distributions of the growth rate and the newborn size measured from individual cells in two different growth conditions. The vertical
lines show the population average values. Cells in the overlap region can have the same growth rate or newborn cell size.
(C) Population average of single-cell measurements demonstrates exponential dependence of newborn cell volume on the average growth rate (red). How-
ever, sb versus l of individual cells (binned data in empty blue circles; measured by following them from birth to division) shows systematic deviations from
the average growth law. Thus, although the cells in the overlap region in (B) can have the same growth rate or newborn cell size, the size of individual cells are
controlled by a mechanism that is different from the growth law. Otherwise, all blue symbols would have fallen on top of the red line.
(D) Correlations between rescaled growth parameters at the single-cell level with SDs from the entire set of E. coli data. Left: generation time versus size at
birth. Middle: elongation rate versus size at birth. Right: size at division versus size at birth. Dashed lines indicate predictions from the adder principle from
this work. The first correlation falsifies the timer model, whereas the last correlation falsifies the sizer model.
See also Figure S1.
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‘‘timer’’ or ‘‘sizer’’). Next, we explain quantitatively conse-
quences of this adder principle on cell-size homeostasis.

Adder Ensures Size Homeostasis
An immediate consequence of addition of constant D is that it
automatically ensured size homeostasis because at every cell
division, the cell approached (albeit passively) the population
average as illustrated in Figure 3A (data depict the average
behavior in all growth conditions). If a cell born at size sb =
hsbi + dsb stochastically added an uncorrelated size D and
divided in the middle with some precision, then the daughter
sizes on average were hsbi + dsb/2. After n consecutive divi-
sions, the original size deviation of the newborn cell on
average decreased as dsb/2

n (Figure 3A). The size homeosta-
sis principle was confirmed by our data for both E. coli and
B. subtilis (Figures 3B and 3C).

Addition of Constant Size and Exponential Elongation
Explain Correlations
The constant Dmodel predicted that autocorrelations of sb, sd,
and td decayed by a factor of two in each generation and that
the correlation coefficient between the generation time of the
mother and its daughters was21/4, which was also confirmed
by the data (Figure S4). Intuitively, the negative correlation re-
flects the increased generation time of the daughter cells that
were born smaller than sb due to stochastic, premature division
of the mother cell [4]. Since all cells elongated exponentially
with the elongation rate proportional to the cell length, cells
born at sb < hsbi would require more time to elongate by D for
division than cells born at sb > hsbi (Figure 1D, left, dashed line).

Distributions of the Growth and Division Parameters
Collapse when Rescaled by Their Respective Means
The constant D model in fact provides a quantitative explana-
tion for the distributions of quantities involved in growth and
size control. The six distributions of the relative septum posi-
tion s1/2, elongation rate a, division size sd, newborn size sb,
generation time td, and size increment D are shown in Fig-
ure 4A. The coefficients of variation (CVs) of four distributions
are related in the D model as
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where s denotes the SD of the distribution (see theory section
in Supplemental Information for details). This predicted hierar-
chy of variability was confirmed by our data for both E. coli and
B. subtilis (Figure 4B). Note that the size at birth sb was slightly
more variable than the size at division sd because of the small
variability of the septum position s1/2. The elongation rate a
was subject to its own physiological control and variability
and showed negligible correlations with the distributions
determined by D (Supplemental Information).
The constancy ofDwas finally supported by the scale invari-

ance of the distributions shown in Figure 4A. In the constant D
model, the average of the three size variables are related as
hDi = hsbi = hsdi/2 and, if r(D) shows scale invariance, the three
distributions r(sb), r(sd) and r(td) also inherit the property of
scale invariance of r(D) (theory section in Supplemental Infor-
mation). In support of our theoretical prediction, all experi-
mental r(D) and other size distributions collapsed onto each

A

B C

Figure 2. Experimental Evidence of Constancy of D in Bacteria

(A) E. coli: average D with respect to the newborn size sb, with each bin containing >103 cells.
(B andC)B. subtilis (B) and E. coli sizemutants (C). All rescaled distributions conditional to different newborn size ranges collapse onto one another, demon-
strating that E. coli and B. subtilis cells grow by a constant size for division, independent of the newborn cell size.
See also Figures S2 and S3.
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other (Figure 4A; [23, 24]). Hence, the variation of all the statis-
tics with growth conditions is determined by the unique
parameter hDi.

Discussion

Proteome and Biological Origin of Constancy of
Added Size
Since the proteome is a good proxy for cell size, the constantD
is consistent with the ‘‘structural models’’ discussed by Fantes
et al. [22]. Key features of the structural models include the
following: (1) individual cells elongate exponentially, (2) initia-
tors of cell cycle are produced at the same rate as the cell elon-
gation rate, and (3) accumulation of the initiators to a threshold
triggers the cell cycle [22]. Since the cellular volume and total
number of proteins increase with the growth rate, the cellular
fraction of protein initiators should reduce tomaintain the con-
stancy of the threshold. In a recent work by Scott et al. [11], the
bacterial proteome is partitioned into three ‘‘sectors’’: R, con-
taining ribosomal proteins; Q, containing housekeeping pro-
teins; and P, containing the rest of the proteins. Using prote-
ome data for the relative fraction 4p of the P-sector proteins
in E. coli (Figure 4E, left; [11]) and the respective average cell
volume hVi (Figure 1C, red line), we found that the total number
of P-sector proteins per cell Np = 4p3 hVi is relatively constant
in all growth conditions for different E. coli strains (see Figure 4
and Supplemental Information). Thus, proteins in the P sectors
behave as the initiators postulated in [22]. This leads to the
prediction that the majority of proteins involved in metabolism
(e.g., nutrient transporters andmetabolic sensors [15]) and the
cell cycle should belong to the P sector of the bacterial prote-
ome (with their constant basal level to the Q sector). Note that
the total proteome per cell increases exponentially with
respect to the average growth rate; the growth law ([5]; Fig-
ure 1C) can thus be interpreted as a response of the average
cell size (total proteome per cell) to nutrient conditions such
that the average P-sector proteins per cell is approximately
constant with respect to the nutrient-imposed growth rate.
There is a clear experimental avenue for the future that will
investigate howDwill changewhen the proteome composition
is perturbed by, e.g., transcription or translational inhibitors.

Extension to Other Organisms
The growing number of modern single-cell data sets provides
a unique opportunity to determine the applicability of our find-
ings to other bacteria as well as to eukaryotes. Analysis of

bacteria, such as Caulobacter [25, 26], and single-celled eu-
karyotes should illuminate the role played by programmed
degradation of regulatory proteins in cell-size homeostasis.
Fantes [27] considered structural models for fission yeast
S. pombe and dismissed them based on existing data sets.
While differences might indeed be expected between eukary-
otes and bacteria, extensive modern single-cell data sets are
now available in, e.g., budding yeast [28], and could be used
to address the question [26]. It will also be of great interest
to determine whether other non-rod-shaped organisms,
particularly those that exhibit tip growth and/or nonuniform
morphologies, including mycobacteria, hyphal fungi, and pro-
tists like Stentor, also add constant volume or maintain their
size through other independent mechanisms. We finally
remark that the size and the shape of cells play a major role
in their physiology in multicellular organisms as well, namely
during Xenopus embryogenesis [29].

Hierarchy of Growth Parameters and the Meaning of
Biological Noise
Weshowed that only two parameters, the elongation rate a and
the added sizeD, are sufficient to reproduce thedistributions of
all growth and division parameters of both E. coli andB. subtilis
in all growth conditions without any adjustable parameters
(Equation 1 and Figure 4C; Supplemental Information). We
thus propose that a and D represent two basic controls of
physiology and size homeostasis and that the size at birth
and division, as well as generation time, are slaved to them.
Ordering the variances of the rescaled distributions, the dis-

tribution of the septum position s1/2 is the smallest, and the
added size D is the largest (Figure 4A). Previously, sizer was
supported because the coefficient of variance for division
size (10%) was smaller than that for generation time (40%–
60%) [19]. Therefore, interpreting coefficient of variance as a
biological ‘‘noise’’ should be taken with caution since D is a
basic control parameter for size homeostasis, yet D shows
the largest variability.

Conclusions
Wedemonstrated that both E. coli andB. subtilismaintain cell-
size homeostasis by adding a constant size D. The constant D
model quantitatively explains the distributions of growth-
related parameters and their variability. How bacteria can
overlap their cell cycles without making fatal mistakes in the
absence of eukaryotic-like cell-cycle checkpoints is a long-
standing open question [30, 31]. Our results provide a new

A B C

Figure 3. Mechanism of Size Homeostasis Following the Adder Principle

(A–C) For all newborn cells regardless of their size, if the cells always add a constant D and divide in the middle, their respective newborn size automatically
converges to D (A). If D is subject to fluctuations without correlations from one generation to the next, and the cell divides in the middle with some precision,
the newborn size on average still converges to hDi. Our data confirm this size homeostasis mechanism for both E. coli (B) and B. subtilis (C). Data in (B) and
(C) show the average from all growth conditions used for each organism.
See also Movie S1.
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perspective on this issue and in the search for the underlying
molecular mechanisms. A direction to be pursued in the future
is the constancy of the added size D and its relationship with
the proteome [11]. That hints at an ensemble of molecular
players and entails both exponential dependency of the
average cell size on growth rate (the growth law) and con-
stancy of D at steady state. It will thus be important to interfere
with protein synthesis and assess the resulting effects on the
cell-size distributions.

Experimental Procedures

Strains
For physiological study, it is important to use a prototrophic strain. For
E. coli, we chose the strain K12 NCM3722, constructed, sequenced, and
extensively tested by Sydney Kustu’s laboratory [32]. We used SJ202, a
nonmotile derivative of NCM3722 (DmotA). For B. subtilis experiments, we
chose a strain in the 3610 background with Coml (Q12L) mutation to allow
competence. We used a derivative with reduced motility and biofilm forma-
tion by deleting epsH and a flagellin protein hag, respectively.

Growth Media
E. coli growth experiments were performed in seven different nutrient con-
ditions. The average generation time in these conditions evenly spanned

from 17.1 to 51.4min at 37!C. The growthmedium is based onMOPS, devel-
oped by Fred Neidhardt [33], and is commercially available from Teknova
(http://www.teknova.com). B. subtilis growth experiments were performed
in four different growth conditions with average doubling times between
16.9 and 38.9 min. The details of the growth media are listed in Tables S1
and S2. Prior to growth of the cells in the microfluidics device, all cultures
were grown in a 37!C water bath shaker, shaking at 240 rpm.

Sample Preparations
All experimental steps—from inoculation to imaging—were performed at
37!C 6 0.1!C. To this end, all equipment was stationed in a 50 3 70 environ-
mental chamber to eliminate any side effect of temperature fluctuations in
the cell growth and physiology. Within the chamber, the temperature distri-
bution was homogeneous, with forced air circulation within 60.1!C, and
constantly monitored at multiple locations. See Supplemental Information
for more information.

Microscopy
Image acquisition and analysis were performed with an inverted micro-
scope (Nikon Ti-E) equipped with Perfect Focus (PFS 3), a 1003 oil immer-
sion objective lens (NA 1.45), and white LED transmission light (TLED, Sutter
Instruments, 400–700 nm), and an Andor NEO sCMOS camera was used for
phase-contrast imaging. The illumination condition was 50 ms exposure
with illumination intensity set at 10% of the maximum TLED intensity. The
frequency of the time-lapse imaging was chosen such that about 20 or

A B C

D E

Figure 4. Origin and Quantitative Consequences of Constancy of Added Size D

(A) Six distributions are shown in the ascending order of their relative widths. All growth parameters from different growth conditions show scale invariance,
i.e., collapse when rescaled by their respective means.
(B and C) Among the six distributions in (A), four distributions are determined by D (division size sd, newborn size sb, generation time td, and D) (B). See
Equation 1. Thus, r(D) and r(a) are sufficient to reproduce all distributions for all growth conditions for both E. coli (C) and B. subtilis (Supplemental Infor-
mation) without any adjustable parameters.
(D and E) ConstantD is consistent with the ‘‘structural models’’ discussed in [22], which assume that the cell grows to accumulate fixed amounts of cell-cycle
regulators in each generation. Since metabolism and cell-cycle proteins are neither housekeeping nor ribosomal proteins, this prediction can be quantita-
tively tested using the proteome data [11] and the growth law in Figure 1C. Indeed, the total P-sector proteins per cell is constant in all growth conditions (E).
See also Figure S4 and Table S3.
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more images were taken per generation time. Imaging in phase contrast
eliminated potential artifacts common in fluorescence imaging. Analysis
of the large number of phase-contrast images required development of
custom high-throughput image analysis software as described in Supple-
mental Information.

Model for the D Control
We denote by s the cell size along the elongating axis of the rod and by sb
and sd the size of cells at birth and division. We assume the width of the
cell is roughly constant. If s(t) is the size of a cell at the current time t, its
added size is denoted D(t) = s(t) 2 sb. The D model posits that the mecha-
nism of control involves the single variable, D = sd 2 sb, the size added be-
tween birth and division. The density of cells n(s, D0, t) having size s and
added size D0, with g(s) = ds/dt, obeys the continuity equations
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(Equation 2)

gðsÞnðs; 0; tÞ=4gð2sÞ
Z N

0

gðxÞnð2s; x; tÞdx: (Equation 3)

The left-hand side in Equation 2 is the total time derivative, and the two
drift terms are due to the elongation of the cells, i.e., ds/dt = g(s) and
dD(t)/dt = g(s). The right-hand side accounts for the division of cells. The
Poissonian splitting rate function g(D) is related to the distribution rDd(D)
for the size added at division of individual cells as r(D) = g(D)exp(2!g(x)
dx). Indeed, the exponential term is the probability that the cell will not divide
up to D and g(D)dD is the probability of division in the range (D, D + dD). Sim-
ple algebra leads then to

gðDÞ= rDdðDÞ
12

R D

0 dxrDdðxÞ
: (Equation 4)

The conversion of the rate of division to unit time involves the Jacobian
jdD(t)/dtj = g(s) that appears in the right-hand side of Equation 2. Finally,
Equation 3 is the boundary condition that accounts for cells having all D =
0 at birth, irrespective of their size 2s at division.
Equation 2 goes back at least to [34, 35], and the formalism was then

expanded and utilized for the sizer, the timer, and their combinations in a se-
ries of papers and books (see, e.g., [8, 24, 36–39]). We took the pragmatic
approach of extracting the functions g and g from the distribution of the
sizes at division and of the elongation rates and using them to simulate
the cell-size control process at the level of individual cells. We then
compared statistical observables alternative to those used for the calibra-
tion of the model. As detailed in the Supplemental Information, this pro-
cedure allowed us to rule out timer and sizer models and to establish the
consistency of the D model.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-
dures, four figures, three tables, and one movie and can be found with
this article online at http://dx.doi.org/10.1016/j.cub.2014.12.009.
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I. EXPERIMENTAL MATERIALS AND METHODS

A. Strain and growth conditions

Strains: For physiological study, it is important to use a prototrophic strain. For E. coli experiments, we chose E.
coli K12 NCM3722 constructed, sequenced, and extensively tested by Sydney Kustu’s lab [1]. We used SJ202, a
nonmotile derivative of NCM3722 (�motA). For B. subtilis experiments, we chose a strain in the 3610 background
with Coml (Q12L) mutation to allow competence. We used a derivative with reduced motility and biofilm formation
by deleting epsH and a flagellin protein hag, respectively.

Growth media: E. coli growth experiments were performed in seven di↵erent nutrient conditions. The average
generation time in these conditions evenly spans from 17.1 to 51.4 minutes at 37�C. The growth medium is based
on MOPS, developed by Fred Neidhardt [2] and is commercially available from Teknova (Teknova.com). B. subtilis
growth experiments performed in four di↵erent growth conditions with average doubling times between 16.9 and
38.9 minutes. The details of the media used for E. coli and B. subtilis are listed in the Tables SII & SI. Prior to
growth of the cells in the microfluidics device, all cultures were grown in a 37�C water bath shaker, shaking at 240 rpm.

Sample preparations: Cell culture for each experiment was carried out in three steps: seed culture, pre-culture and
experimental culture, all in the growth medium of the corresponding experiment. The culture volume was 3 ml
in 950 mm ⇥ 150 mm culture tubes to ensure aeration. For seed culture, cells were inoculated into growth media
from -80 glycerol stock, cultured at 37�C with shaking overnight. The culture was then backdiluted 1000-fold in the
identical growth medium and cultured in 37�C water bath shaker (pre-culture) until it reaches exponential phase.
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The pre-culture was then diluted 1000-fold in the identical growth medium and cultured in 37�C water bath shaker
(experimental culture). After a few cell doublings, the experimental culture was centrifuged, and concentrated 20
folds in the identical media containing 50mg/ml of bovine serum albumin (BSA), to reduce nonspecific adsorption of
cells to glass surface in the microfluidic device. The concentrated culture was injected in the microfluidics device for
single cell imaging. Fresh pre-warmed media was pumped in the device immediately after loading of the cells in the
growth channels.

Media name Bu↵er Carbon source Supplement Mass doubling
(as used in the text) (v/w) concentration time at 37�C

glycerol MOPS modified bu↵er Glycerol 0.4% – 51.4
sorbitol MOPS modified bu↵er Sorbitol 0.2% – 50.9
glucose MOPS modified bu↵er Glucose 0.2% – 37.7

glucose + 6 a.a. MOPS modified bu↵er Glucose 0.2% table I.b 30.1
glucose + 12 a.a. MOPS modified bu↵er Glucose 0.2% tables I.b and I.c 26.6
Synthetic rich MOPS modified bu↵er Glucose 0.2% table I.d 22.5

Tryptic soy broth (TSB)
Tryptone 1.7%, Soytone 0.3%, sodium chloride 0.5%,
glucose 0.25%, and dipotassium phosphate 0.25%

17.1

Table I.a: MOPS modified bu↵er
Components Concentration
MOPS (MW 209.3) 40mM
Tricine (MW 179.2) 4.0mM
Iron Sulfate Stock 0.01mM
Ammonium Chloride 9.5mM
Potassium Sulfate 0.276mM
Calcium Chloride 0.0005mM
Magnesium Chloride 0.525mM
Sodium Chloride 50mM
Ammonium Molybdate 3⇥10�9 M
Boric Acid 4⇥10�7 M
Cobalt Chloride 3⇥10�8 M
Cupric Sulfate 10�8 M
Manganese Chloride 8⇥10�8 M
Zinc Sulfate 10�8 M
Potassium Phosphate Dibasic 1.32mM

Table I.b: supplements for glucose+6 a.a. and +12 a.a.
Components Concentration (µg/ml)
L-Methionine 5
L-Histidine 5
L-Arginine 5
L-Proline 5
L-Threonine 5
L-Tryptophan 5

Table I.c: supplements for glucose+12 a.a.
Components Concentration (µg/ml)
L-Serine 5
L-Leucine 5
L-Tyrosine 5
L-Alanine 5
L-Asparagine 5
L-Aspartic Acid 0.25

Table I.d: supplements for synthetic rich media
Components Concentration
L-Alanine 0.8mM
L-Arginine 5.2mM
L-Asparigine 0.4mM
L-Aspartic Acid, Potassium Salt 0.4mM
L-Glutamic Acid, Potassium Salt 0.66mM
L-Glutamine 0.6mM
L-Glycine 0.8mM
L-Histidine HCl H2O 0.2mM
L-Isoleucine 0.4mM
L-Proline 0.4mM
L-Serine 10mM
L-Threonine 0.4mM
L-Tryptophan 0.1mM
L-Valine 0.6mM
L-Leucine 0.8mM
L-Lysine 0.4mM
L-Methionine 0.2mM
L-Phenylalinine 0.4mM
L-Cysteine HCl 0.1mM
L-Tyrosine 0.2mM
Thiamine 0.01mM
Calcium Pantothenate 0.01mM
para-Amino Benzoic Acid 0.01mM
para-Hydroxy benzoic Acid 0.01mM
di Hydroxy Benzoic Acid 0.01mM
Potassium Hydroxide 1.5mM
Adenine 0.2mM
Cytosine 0.2mM
Uracil 0.2mM
Guanine 0.2mM

Table SI List of growth media, carbon sources and the supplements that we used for E. coli in this study.
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Media name Bu↵er Carbon source Supplement Mass doubling
(as used in the text) (v/w) concentration time at 37�C

S750 glycerol tables II.a and II.c Glycerol 1% table II.b 35.6
S750 glucose tables II.a and II.c Glucose 1% table II.b 38.9

LB Tryptone 1%, Yeast extract 0.5% and NaCl 1% 17.8

Tryptic soy broth (TSB)
Tryptone 1.7%, Soytone 0.3%, sodium chloride 0.5%,
glucose 0.25%, and dipotassium phosphate 0.25%

16.9

Table II.a: S750 salts
Components Concentration
MOPS bu↵er 50mM
Ammonium sulfate (NH4)2SO4 1mM
Potassium phosphate monobasic KH2PO4 5mM

Table II.b: supplemets
Components Concentration
glutamate 6.8mM
Na-Citrate 250uM
FeCl3 250uM

Table II.c: S750 metals
Components Concentration
MgCl2 2mM
CaCl2 700µM
MnCl2 50µM
ZnCl2 1µM
FeCl3 5µM
Thiamine-HCl 1mM
HCl 20µM

Table SII List of growth media, carbon sources and the supplements that we used for B. subtilis in this study.

Figure S1. A view of the environmental chamber. Equipment is fully housed in the
37�C environmental chamber in order to avoid temperature fluctuations.

B. Temperature control

All experimental steps - from inoculation to imaging - were performed at 37±0.1�C. To this end, all equipment
was stationed in a 5’ x 7’ environmental chamber (Figures S1 and S2) to eliminate any side e↵ect of temperature
fluctuations on the cell growth and physiology. Within the chamber, the temperature distribution was homogeneous
with forced air circulation within ±0.1�C, and constantly monitored at multiple locations.

C. Microfluidics

To monitor single cell growth, we employed the microfluidic mother machine that we developed to study cell
growth and the cell cycle [3]. Master molds, from each of which many PDMS microfluidic devices were cast, were fabri-
cated using standard nanofabrication techniques (detailed protocols are available in “The Mother Machine Handbook”
from the web site of Jun lab at http://jun.ucsd.edu and a video at http://www.youtube.com/watch?v=RGfb9XU5Oow).
PDMS was prepared from a Sylgard 184 Silicone Elastomer kit: polymer base and curing agent were mixed in a 10
to 1 ratio, air bubbles were purged from the mixture in a vacuum chamber, the degassed mixture was poured over
the master, and the devices were cured about 24 hours at 65�C. Cured PDMS has a consistency like rubber; devices
were peeled from the master mold. Devices were treated with pentane and then acetone to remove residual uncured
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Figure S2. A panoramic view of the interior of the environmental chamber showing the microscope and the other facilities
that we employed for the growth and the imaging of live cells.

polymer from the PDMS matrix.
The inlet and outlet of the microfluidic device were bolstered with a thicker layer of PDMS. To bond the PDMS

layers, the surfaces were exposed to oxygen plasma for 15 seconds at 30 watts in a Harrick Plasma system. Oxygen
plasma makes exposed PDMS and glass reactive, so that covalent bonds form between surfaces brought into contact
with one another. The seal between PDMS surfaces was established for 10 minutes at 65 �C.

The PDMS mother machine device was sealed to a Willco-dish glass bottom dish (Willco Wells) with no.1.5
glass thickness (170 µm). Before use, the glass surfaces were wiped with ethanol and then immediately with water,
to remove residual ethanol. As before, the PDMS and glass surfaces were exposed to oxygen plasma for 15 seconds.
Then the PDMS microfluidic device was sealed to the cover slip and the bonds were allowed to set for 10 minutes
at 65 �C. After constructing the device, the channel walls were incubated with 50 mg/ml BSA (Sigma) for surface
passivation. The growth medium also contained 0.5 mg/ml BSA in the background.

Because the E. coli cell width changes with respect to the growth condition, each growth condition required a
unique mother machine device optimized for the experiment.

D. Microscopy and image acquisition

An inverted microscope (Nikon Ti-E) equipped with Perfect Focus (PFS 3), a 100x oil immersion objective lens
(NA 1.45), white LED transmission light (TLED, Sutter Instruments, 400-700nm) and Andor NEO sCMOS camera
was used for phase contrast imaging. The illumination condition was 50ms exposure with illumination intensity set
at 10% of the max TLED intensity. The frequency of the time lapse imaging was chosen such that about 20 or more
images were taken per generation time.

E. Image analysis

We developed custom high-throughput image analysis software optimized for our growth experiments in the
mother machine. The procedure includes processing of phase contrast images to eliminate background patterns from
the PDMS device. The overall steps are as follows:

• Step 1: Subtract the image of an empty channel from the channels containing cells. The purpose of this step is to eliminate

patterns from the PDMS device.

• Step 2: Find the mid-cell axis that runs through the long axis of the cells.

• Step 3: Project the brightness profile of the cells along their mid-cell axis.

• Step 4: From the brightness profile, find the cell poles and the length of the cells.
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Figure S3. The behavior of E. coli width, length and volume as a function of growth rate (divisions/hour). (left) Width,
length at birth and average length of the cells as a function of the growth rate. (right) Newborn cell volume, and average cell
volume as a function of the growth rate. Both figures are on semi-log panels.

II. FULL EXPERIMENTAL DATA

A. Growth law: variation of cell volume, length and width as a function of growth rate

The growth law, based on the two classic works [4; 5], established an exponential relationship between the
average cell size and the growth rate (number of divisions per hour). In our study, using single cell data, we went a
step beyond and tested the growth law at the single cell level. Figure 1C of the main text confirms the exponential
relationship between average volume (or, equivalently, the volume of newborn cells) and the growth rate of E. coli,
consistent with the classic literature.

At the single cell level, we measured both the width and the length of the cell and the resulting data is shown
in Figure S3. Importantly, E. coli cells maintained a constant width during elongation. This constancy can be seen
in Figure S4A, where the cell width varies less than 1% between birth and division (by linear fit; see also Table SII).
Furthermore, the width of the cell was independent of its length (Figure S4B).

Because the cell width was constant for each growth condition, we were able to calculate the volume of the cell
assuming the geometry of the cell is cylindrical with two hemispherical caps. The resulting values are reported as a
function of the growth rate.

The growth law between the average newborn cell volume and the growth rate raises a question whether the
newborn cell length and width also show an exponential dependence on the growth rate. Figure S3 suggests that may
indeed be the case.

B. Correlation of parameters with respect to the newborn size

In Figure 1D of the main text we presented the correlation between a set of parameters of interest, viz., the
rescaled elongation rate, the generation time and the size of the cell at division, as a function of the rescaled newborn
size. Here, we present data separately by showing rescaled scatter plots for the various growth conditions in Figure
S5. The trend is manifestly similar for all the growth conditions.

C. Constancy of the added size with respect to the size of the cell at birth

As a quantitative test of the � model, we analyzed the distribution of the added size at division, �
d

⌘ s

d

� s

b

,
where s

d

and the s

b

are the size of the cell at division and birth, respectively. In the SI, we shall use for size
increments at division the notation �

d

, with the index meant to distinguish the value at division from the value
during elongation that we shall need later. Figure 2 in the main text shows the distributions of the added size,
P (�

d

|s
b

), conditional to s

b

, which were observed to be independent of s
b

. Here, we make a direct comparison with
the conditional distribution of the size at division, P (s

d

/hs
d

i|s
b

), for all the experiments. Figure S6 depicts P (�
d

|s
b

)
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sorbitol -0.013 -0.079 1.6 5.18
glycerol -0.024 -0.019 0.4 9.03

glucose -0.026 -0.037 0.7 5.03
glucose + 6. a.a. -0.046 -0.031 0.6 6.05

glucose + 12 a.a. -0.036 -0.06 1.2 4.22
synthetic rich -0.015 -0.034 0.7 5.84

TSB -0.006 -0.054 1.1 6.11

glycerol

Table of statistics

Figure S4. The behavior of the width of E. coli cells in the steady states at given growth conditions. (A) The width remains
constant throughout the cell cycle, from birth to division. (B) The absence of correlation between the length at birth (rescaled
by its mean value) of the cells and their width (rescaled by its mean value). The resulting correlation between width and
length of the cells is negligible and smaller than the coe�cient of variation of the width itself.

Table SII A numerical comparison of the variation of the cell width with respect to the newborn size and to the age
of the cells. The second column (data from panel A) shows the change of the average width from birth to division, based on a
linear fit to the data. The columns three and four (data from panel B) show the dependence of the cell width on the newborn
length and the change of the average width normalized by the coe�cient of variation (CV) of the newborn length, which is
about 20%. The last column shows the coe�cient of variation (CV) of the cell width in di↵erent conditions.

(top panels) and P (s
d

|s
b

) (bottom panels) in di↵erent growth conditions. We observe a consistent trend in all of the
experiments : the distributions of �

d

are independent of the newborn cell size while the distributions of s
d

clearly
depend on s

b

. The conditional distribution of the size at division, P (s
d

/hs
d

i|s
b

), manifestly shifts as the newborn size
s

b

increases.

D. Constant � evidence for E. coli K-12MG1655 and B/r strains

Using data from published work by Wang et al. [3], we have looked into the constancy of � with respect to
newborn size of the cells. The experiments have been performed in similar microfluidics device in LB media at 37�C.
Figure 7 shows that the added size is indeed constant with respect to newborn size and that the distribution of �/h�i
is independent of newborn size.
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Figure S5. Correlations between E. coli rescaled parameters in di↵erent growth conditions. The three rows show the rescaled
(by their mean) elongation rate, generation time and size of the cell at division vs the size of the cell at birth. Note that the
trends are similar for di↵erent conditions, strongly suggesting that the size control mechanism is independent of the growth
conditions. The plot in Figure 1D of the main text is a combination of the data presented here.

E. Correlation between growth rate � and added size �

To justify use of the growth rate distribution ⇢(�) and the added size distribution ⇢(�) as two independent
basic controls of physiology and size homeostasis, we measured their correlations. We confirm the two show negligible
correlations (Fig. S8).

F. Relaxation of atypical cell sizes to typical values

The � model implies that if a group of cells is prepared with a size initially deviating from the population
average value, their average size will approach the population average as generations elapse (see Section IV for details).
To test this, we collected a subpopulation of the cells in each experiment, namely we sorted one group of large cells
and one group of small cells. We then followed these subpopulations for 10 generations and monitored their average
newborn size after each division. After 10 generations, the cell size of each group essentially converged to the average
size (hs

b

i = h�
d

i) for the corresponding growth condition. In Figure 3b of the main text, we presented the convergence
of the rescaled cell sizes for a combination of all experiments and we observed consistency with the � model. Figure S9
shows the convergence of the size for each growth condition separately. Blue and red markers/lines indicate the large
and small subpopulations, respectively. Markers with error bars are the results of the experiments; solid lines show
the theoretical prediction of the � model, which will be presented in Section IV.

G. Distributions of the various growth parameters

Growth parameters, such as elongation rate, generation time, and size at birth and division, have some vari-
ability over the populations in a given growth condition. Figure 4 in the main text showed the remarkable collapse
of the various distributions once the variables are rescaled by their mean. Here we present in Figure S10 the proba-
bility distributions of the same parameters yet with no rescaling by their mean. The table in Figure S10 reports the
numerical values of the mean, the standard deviation, and the coe�cient of variation (CV). The standard deviation
for all the parameters increases as the mean increases. Conversely, the CV does not show any particular dependence
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on the mean. As discussed in more detail in Section V, this behavior is consistent with a scale-invariant form for the
probability distributions. An additional prediction is that higher-order moments of order p normalized by the power p
of the mean should be a constant (dependent on p) with respect to the growth conditions. Such behavior is consistent
with the data, as shown in Figure S11.
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dent input parameters for self-consistency check of the � model for cell-size control and
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TSBsynthetic richglucose + 12 a.a.glucose + 6 a.a.glucoseglycerol sorbitol<∆d> (µm)
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10 generations

TSBLBS750 glycerol S750 glucose
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3.1
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Figure S9. The � model ensures that fluctu-
ations in the cell size are controlled. We fol-
lowed a subpopulation of big (red lines) and
small (blue lines) cells for 10 generations. In
each growth condition, the average size of each
subpopulation converges to the average value
for the whole population in the corresponding
growth condition. The top row shows data for
E. coli and the bottom row shows B. subtilis

data. Markers with error bars show experimen-
tal data while solid lines show the theoretical
predictions for the � model discussed in Sec-
tion IV.

H. Autocorrelations

Autocorrelation functions can reveal repeating patterns or memory in a series of data and the decay of memory
across generations. The autocorrelation function of various parameters of interest, including elongation rate, gener-
ation time, newborn size, division size, and added size, are presented in Figure S12. The corresponding theoretical
predictions for the � model are discussed in the Section IV.A.
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Figure S10. Normalized distributions of various E. coli parameters in di↵erent growth conditions. The table on the right
shows the mean, the standard deviation and the coe�cient of variation (CV) of the quantities plotted on the left.
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Figure S11. Higher-order moments of the distributions of various E. coli parameters. The moments of order p (p = 2, 3, 4),
divided by the power p of the mean, are plotted as a function of the mean. For a scale-invariant distribution, those normalized
moments should be constant with respect to the value of the mean, which is consistent with the data. Deviations observed for
the fourth-order moment are due to partial statistical convergence, as witnessed by their increase moving from the left to the
right graphs (the direction of increasing fluctuations, see Figure S10.)

III. THEORY: A SUMMARY OF PREVIOUS MODELS FOR THE CELL SIZE CONTROL

Mechanisms previously proposed in the literature for the control of the cell size can be grouped into the following
categories: (A) the control depends directly on the size of the cell (“sizer”); (B) the control is based on the age of the
cell (“timer”); (c) combinations of the two previous controls. We briefly review the various mechanisms below. We
also compare their predictions with the experimental data presented in the main text, illustrating the limitations of
the existing models and the necessity of the � model discussed later, based on the control of the added size.
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they have essentially vanished.

A. The “sizer”

The main assumption of the model is that cells divide after reaching a threshold size, which is drawn from
a probability distribution that depends on growth conditions. This mechanism explains by its very definition the
observation that cells have a well-defined distribution of sizes. However, as shown below, its specific predictions are
not supported quantitatively by our experimental data.

As shown by Figure S4, E. coli cells keep their width roughly constant during their growth and elongate along
the axis of the rod. We shall denote the size of the cells along the axis by s and assume ṡ = g(s), where the dot
indicates the time derivative. Sizes of the cells at birth and division are denoted by s

b

and s

d

, respectively. The
number of individuals in a population of bacteria having size s at time t is denoted n(s, t). The sizer mechanism
posits that the rate of division of the cells depends on their size s only. The equation that governs the evolution in
time of n(s, t) reads :

@

t

n(s, t) + @

s

(g(s)n(s, t)) = �g(s) �(s)n(s, t) + 4g(2s)�(2s)n(2s, t) . (1)

The left-hand side in (1) is the total time-derivative, with the s-derivative drift term accounting for the elongation of
the cells. The right-hand side of (1) stems from the division of cells and �(s) is the so-called splitting rate function
[see, e.g., [6]]. The function is defined as the local Poisson rate of cell division, i.e., �(s) ds is the probability that a
cell of size s divides while growing from s to s+ ds. Therefore, the probability that a cell with initial size s

b

has not

divided while reaching the size s

d

is exp
h
�
R
s

d

s

b

�(s0) ds0
i
. Finally, the conversion of the division rate from unit size

to unit time involves the factor |ds/dt| = g(s), which justifies its presence in the first term (of loss) on the right hand
side of (1).

The second term in the right-hand side of (1) describes the gain in the number of cells in the size range
(s, s + ds). The gain originates from those bacteria in the size range (2s, 2s + 2ds) which divide and thus halve
their size (fluctuations in the size of the o↵springs are neglected here for simplicity but will be discussed later). The
structure of the second term is thus analogous to the previous one, with s replaced by 2s in the arguments of the
functions. The factor 4 arises from the product of two factors 2 : the first is due to the 2ds range of dividing cells and
the second is due to division producing two o↵springs.

Equation (1) has a long history, which goes back at least to Ref. [7], where the basic formalism was introduced.
The formalism was further developed and expanded in [8] and then utilized in a series of papers and books that
include [6; 9; 10; 11; 12; 13]. Additional features, such as e.g. fluctuations in the rate of elongation or in the sizes
of the o↵springs due to the positioning of the septum can be included in the formalism [see, e.g., the Supplementary
Material in [13]], but will not be needed here.

The solution to the equation (1) depends on the specific form of the splitting rate �(s) and the elongation law
g(s). It is possible though to extract a few general relations that we proceed to derive.

First, integrating (1) over s, we obtain the equality

@

t

Z
ds n(s, t) =

Z
ds g(s) �(s)n(s, t) , (2)

where the right-hand side is the total number of individuals which divide in the time interval [t, t+ dt]. For the rate
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of growth of the number of individuals in the population, we obtain then

@

t

ln

Z
ds n(s, t) =

Z
ds g(s) �(s)

n(s, t)R
ds n(s, t)

⌘ hg(s)�(s)i . (3)

At long times, we expect from the very definition of the model that n(s, t)/
R
ds n(s, t) will reach a stationary distribu-

tion that we denote by ⇢
n

(s). The corresponding rate of growth of the population is denoted k =
R
dsg(s)�(s)⇢

n

(s).
Second, multiplying (1) by s and integrating, we can obtain for the average size

@

t

hsi = hg(s)i � hg(s)�(s)i hsi . (4)

In the stationary state, the two terms on the right-hand side of (4) will balance. Namely, for an exponential elongation
g(s) = ↵s ln 2, it follows from (4) that the consistency condition hs �(s)i = 1 is satisfied. The factor ln 2 in g(s) is
introduced to conform to the microbiology convention of cells elongating as s(t) = s

b

2↵t.
Finally, multiplying (1) by s

q and integrating, we obtain a series of relations for higher-order moments. In the
stationary state and for an exponential elongation g(s) = ↵s ln 2, the relations read (q�1)hsqi = (1�21�q)hsq+1

�(s)i,
where the integer q > 1 and we have made use of (4).

1. Comparison and consistency with experiments

The analytical solution of (1) is not available for generic forms of the elongation rate g(s) and of the splitting
rate function �(s). Imposing a sharp maximum value S for the size distribution, i.e. n(s > S, t) ⌘ 0, permits to
patch the solution and have it in closed form (see the SI in [11] for details) yet the resulting expressions are not
particularly transparent. Therefore, we decided to take a more pragmatic approach : g(s) and �(s) are extracted
from experimental data, e.g. from the distribution of the sizes at division and of elongation rates, and we use them
to simulate the cell size control process at the level of individual cells. We can then compare additional statistical
observables, other than those used to calibrate the model, to assess the consistency and validity of the sizer mechanism
for the size control.
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Figure S13. Calibration of the “sizer” model for the control of the cell size. Each cell’s elongation rate is a random variable
independently drawn from the experimental E. coli distribution, ⇢ex

↵

(↵), shown in red in panel (A) for the seven di↵erent
growth conditions discussed in the Section I.A (in the order of increasing growth rate : glycerol, sorbitol, glucose, glucose +
6 a.a., glucose + 12 a.a., synthetic rich, TSB). Correlations among the elongation rates of mothers and siblings are weak and
not taken into account; we verified that results are not modified by including them. The splitting rate �(s) is computed from
the distribution of the size of the cells at division ⇢ex

d

(s
d

) as detailed in the text (see eqs. (5) and (6)). The experimental
distributions are shown in red in panel (B) for the same growth conditions as for the elongation rate. The curves in black are
the results of numerical simulations of the model detailed in the text. Their agreement with the experimental curves confirms
that the parameters (distribution of the elongation rate ↵ and the splitting rate function �) of the model are appropriately
calibrated.

Specifically, the calibration of the model goes as follows. As for the elongation rates, experimental data are
consistent with an exponential law, g(s) = ↵s ln 2, where the elongation rate ↵ can vary from cell to cell. The values
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of ↵ that we use in the simulations are drawn directly from the experimental distribution, ⇢ex
↵

(↵) shown in Figure S13
for E. coli. Draws are independent for di↵erent bacteria. Furthermore, experimental data indicate that the correlation
between the elongation rates of mother and daughter cells is weak. We therefore assume that the elongation rate ↵
for each cycle of elongation of a bacterium is drawn independently of its past and future cycles of elongation.

As for the splitting rate function �(s), we compute it from the the experimental size distributions ⇢ex
d

(s
d

) and
⇢

ex

b

(s
b

) of the sizes at division and birth, respectively. From the very definition of the splitting rate �(s) we have at
the steady state the following relation

⇢

d

(s
d

) = �(s
d

)

Z
s

d

0

⇢

b

(s
b

)e
�

R
s

d

s

b

�(s

0
) ds

0
ds

b

. (5)

Indeed, ⇢
b

(s
b

) is the probability that a newborn cell has size s

b

, the exponential term is the probability that the cell
will not divide up to s

d

and, finally, �(s
d

) ds
d

is the probability of division in the range (s
d

, s

d

+ ds

d

). The integral
runs over all possible values of s

b

respecting the constraint s
d

� s

b

.

Using the experimental distributions for ⇢
d

and ⇢
b

, we can extract the splitting rate function � from (5). In
practice, the calculation is simplified by remarking that the distributions at division and birth are well separated and
very weakly overlap in their tails, i.e. � is small where ⇢

b

is appreciable. A good approximation to (5) is then to
assume ⇢

b

(s
b

) = �(s
b

), which gives

⇢

d

(s
d

) = � d

ds

d

e

�
R

s

d

0 �(s

0
) ds

0
) 1�

Z
s

d

0

⇢

d

(s0) ds0 = e

�
R

s

d

0 �(s

0
) ds

0
) �(s

d

) =
⇢

d

(s
d

)

1�
R
s

d

0

⇢(s0) ds0
, (6)

where we first used that the cumulative distribution and its density are related by ⇢
d

(s
d

) = �d

⇥
1�

R
s

d

0

⇢

d

(s0) ds0
⇤
/ds

d

and then took a logarithm of the second equality and derived it with respect to s

d

. The final approximation coin-
cides with the expression for � given in [6]. Experimental data for the size at division are well reproduced by the
approximation (6), as shown in Figure S13.

We now proceed to simulate the dynamics of a growing population using the distribution of the elongation rates
↵ and the splitting function �(s) extracted from the experimental data as we just described. Each cycle of elongation
of a cell proceeds at the constant (random) rate ↵ and division occurs with the Poissonian rate �(s). After an initial
transient time period, distributions for the various observables reach a stationary form, as expected. The resulting
distributions for the final size s

d

and ↵, which we used to calibrate the model, are shown in Figure S13 for the case of
E. coli. Similar curves are obtained for B. subtilis (not shown). Non-trivial tests for the sizer mechanism of control
are provided by comparing the results of numerical simulations and experiments for additional observables.

The distribution for newborn sizes s
b

is shown in Figure S14. The agreement is good, yet not independent of
the calibration process itself since the two distributions of the size at birth and at division are simply related to each
other as shown in panel (B) of the figure. A germane test of the model is provided by the distributions of the added
size �

d

= s

d

� s

b

and of the generation time ⌧
d

= log
2

(s
d

/s

b

)/↵ for each cell during the growth of the colony. Results
obtained by simulations are compared with E. coli experimental data in Figure S15 : the former are found to have
fatter tails than the latter. The disagreement can be intuitively traced back to the fact that the sizer mechanism
posits that division is essentially controlled by the cell size only. Indeed, given an initial size s

b

the probability of

division in the interval (s
d

, s

d

+ ds

d

) is / �d exp
h
�
R
s

d

s

b

�(s0) ds0
i
/ds

d

[see (5)] and the dependency on s

b

is weak, as

we discussed for the derivation of (6). Conversely, experimental data show that the dependency between the initial
and the final size of a cell is strong, as clearly illustrated by the shifts with s

b

of the conditional probabilities P (s
d

|s
b

)
shown by experimental data presented in the Figure S6. Discrepancies in Figure S15 are then intuited because the
shift of P (s

d

|s
b

) with s

b

reduces the contribution to the left (right) tails of �
d

= s

d

� s

b

and ⌧
d

from those cells whose
initial size is larger (smaller) than the average.

A final check that the dependency of the division rate on s

b

is indeed the crucial element missing in the sizer
mechanism is provided in Figure S16. Picking randomly s

b

and s

d

from the two distributions ⇢ex
b

(s
b

) and ⇢ex
d

(s
d

) (with
the only constraint s

d

� s

b

and no additional correlations) we show that the sizer model predictions are recovered. In
conclusion, the sizer model ensures a stationary distribution of the cell size, yet its quantitative predictions disagree
with the experiments. Discrepancies are due to the fact that the sizer mechanism neglects the role of the size at birth
s

b

on the control of the cell size at division s

d

.
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Figure S15. Test of the “sizer” model for the control of the cell size. The model calibrated as in Figure S13 is simulated
numerically and we report the distribution of the generation time ⌧

d

= log2(sd/sb)/↵ and of the added size �
d

= s
d

� s
b

for
the case of E. coli. Black curves refer to numerics and red dots to experiments, respectively. The seven panels in (A) show the
curves for the generation time ⌧

d

for all the growing conditions while panel (B) presents the distribution of the �
d

. Tails in the
experimental data are significantly less pronounced for the reasons discussed in the body of the text. A similar disagreement
is observed for B. subtilis.

B. The “timer”

The “timer” mechanism posits that cell division is controlled by the age of the cell, i.e. the time elapsed since
its birth. The state of cells is therefore described by their size s and their age ⇠ and the corresponding number of
cells at time t is denoted by n(s, ⇠, t). The equation for the evolution of n reads :

@

t

n(s, ⇠, t) + @

s

[g(s)n(s, ⇠, t)] + @

⇠

n(s, ⇠, t) = ��(⇠)n(s, ⇠, t) ; n(s, 0, t) = 4

Z
�(⇠0)n(2s, ⇠0, t) d⇠0 . (7)

The left hand side is the total time derivative : the drift in s is due to the elongation of cells ṡ = g(s) while the drift
in ⇠ is due to the aging of cells ⇠̇ = 1 (the discontinuity in ⇠ occurring at division will be addressed momentarily).
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Figure S16. The “sizer” model is inconsistent with experimental data because it neglects the e↵ects of the initial size s
b

onto
the control of the size s

d

at division of the cells. The point is directly demonstrated by choosing randomly s
b

and s
d

from their
respective experimental distributions ⇢ex

b

(s
b

) and ⇢ex
d

(s
d

) for E. coli. The only constraint we impose in the random draw is
s
d

� s
b

and no additional correlations are retained. The resulting distributions for the “scrambled” added size s
d

� s
b

(shown
in red) are indeed in agreement with the sizer model results (black curves).

The right hand side of the first equation in (7) is the loss term due to the division of cells. The Poisson splitting rate
function � depends now on the age of the cell, ⇠. Furthermore, since ⇠̇ = 1 there is no additional factor coming from
the conversion of the rate of division from unit age to unit time (see (1)). From the definition of the splitting rate it
follows that

⇢

⌧

d

(⌧) = �(⌧) e�
R

⌧

0 �(⇠

0
) d⇠

0
) �(⌧) =

⇢

⌧

d

(⌧)

1�
R
⌧

0

d⇠

0
⇢

⌧

d

(⇠0)
, (8)

where ⇢
⌧

d

(⌧) is the probability density for the generation time ⌧
d

of a given cell and the derivation proceeds as for
(6). Finally, the last equation in (7) is the boundary condition that accounts for newborn cells having all the same
age ⇠ = 0, irrespective of their size 2s that gets halved. The integral

R
d⇠ �(⇠)n(2s, ⇠, t) represents the total number

of cells that divide in the unit time ; as in (1), the factor 4 is the product of the factor 2 resulting from the 2 ds width
of the range of dividing cells and the factor 2 due to division producing two newborn daughters cells.

The dynamics of the age of the cells is independent of their size, as it can be easily seen by integrating (7) over
s. The resulting equations for the marginal distribution n(⇠, t) =

R
n(s, ⇠, t) ds reads

@

t

n(⇠, t) + @

⇠

n(⇠, t) = ��(⇠)n(⇠, t) ; n(0, t) = 2

Z
d⇠ �(⇠)n(⇠, t) . (9)

It is also immediate to integrate (7) over s and ⇠, obtaining for the rate k of growth of the population

@

t

Z
n(s, ⇠, t) ds d⇠ =

Z
�(⇠)n(s, ⇠, t) ds d⇠ =

Z
�(⇠)n(⇠, t)d⇠ , (10)

which depends on the marginal distribution n(⇠, t) only. The well-known solution [14] to (9) is n(⇠, t) = e

kt

ñ(⇠),
where

ñ(⇠) = Ae

�
R

⇠

0 �(⇠

0
) d⇠

0�k⇠ ; 2k

Z 1

0

e

�k⇠

e

�
R

⇠

0 �(⇠

0
) d⇠

0
d⇠ = 1 . (11)

The first equation is simply obtained by integrating the di↵erential equation in (9) and the constant A depends on the
initial size of the population. The second relation is obtained from the boundary condition in (9) by an integration by
parts. A similar integration by parts also allows to check that the second equation in (11) is equivalent to the growth
rate relation k

R
ñ(⇠) d⇠ =

R
ñ(⇠)�(⇠) d⇠ derived in (10).

As for the dynamics of the size of cells, we can obtain the equation for the mean size multiplying (7) by s and
integrating over s and ⇠. The resulting expression reads

@

t

hsi = hg(s)i � khsi , (12)

where hsi ⌘
R
s n(s, ⇠, t) ds d⇠/

R
n(s, ⇠, t) ds d⇠ and similar definitions apply for other averages. For a stationary state,

the left-hand side is required to vanish, i.e. elongation should balance the growth. In the case of linear elongation,
g(s) = const. a stationary distribution is reached and hsi = const./h�(⇠)i, where we used k = h�(⇠)i. Conversely, for
exponential elongation g(s) = ↵s ln 2, a stationary distribution obtains only for the special choice ↵ ln 2 = k. If the
equality is not satisfied, then the average size grows to infinity or decay to zero exponentially fast (see below).

The lack of control of the size of the cells by the timer mechanism was remarked in [15; 16] and it is intuitively

understood by considering the sizes at birth s

(n)

b

and s

(n+1)

b

over two consecutive generations n and n + 1. For an
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exponential elongation, log
2

s

(n+1)

b

� log
2

s

(n)

b

' ↵⌧

d

�1, where ⌧
d

is again the generation time and ↵ is the elongation
rate for the bacterium in the n-th generation. Exponential elongation of the size of the cells makes that the average
value of ↵⌧

d

must be precisely tuned in order to avoid a systematic drift of log
2

s

b

. Notice that even in the absence of
drift, the long term behavior of log

2

s

b

will be analogous to a random walk (assuming that the values of ↵⌧
d

fluctuate
and decorrelate over the generations). Therefore, the variance of the size of the cells will grow across the generations
and no e↵ective control of the size of the cells is achieved by the timer mechanism. Diluting bacteria by washing them
out, e.g. a term �Dn(s, ⇠, t) is added to the equation (7), will not modify the previous conclusion unless dilution is
coupled to the size, i.e. the dilution rate depends on s.

In practice, the elongation rate is deviating from a linear behavior at very small and very large sizes so that the
logarithm of the size will not go to zero or diverge to infinity. However, its behavior will depend very sensitively on
the details of the elongation law at very small and large sizes [13; 17] and the resulting size distributions are generally
too wide (data not shown). Most importantly, the timer mechanism disagrees with our experimental data in that the
conditional distribution P (⌧

d

|s
b

) of the generation time ⌧
d

vs the initial size of cells s

b

should be independent of s
b

.
Conversely, data shown in the main text indicate a clear dependency on s

b

.

C. Mixed models

Diverse combinations of sizer and timer mechanisms are conceivable. A well-known instance is the bilinear
model proposed in [18]. The proposed dynamics is summarized as follows : cells grow linearly in time g(s) = u until
they reach a threshold size s

⇤

. The threshold is argued to be universal with respect to growth conditions and its value
s

⇤

' 2.78µm to be twice the minimal possible length for E. coli cells. After reaching s

⇤

, cells keep growing for a fixed
amount of time (⇠ 20 mins) at a velocity 2u (see [19; 20; 21] for a discussion of bilinear vs exponential elongation).
The velocity u depends on the growth conditions and the last 20 mins phase accounts for the dependency of the
distribution of the final size s

d

on u, and thus on the growth conditions. Ref. [18] sharply poses relevant questions and
deserves all the influence it had in the field. However, the specific mechanism which was proposed is not supported
by modern experimental data that allow for better statistics. In Figure S17, the size s

d

and the generation time ⌧
d

at division vs the initial size s

b

are presented and the disagreement between the predictions and the data is manifest.
More recently, other combinations of age and size control have been proposed. The intuitive motivation comes

from plots like Figure 1D in the main text, where a behavior intermediate between a timer and a sizer is observed.
The most recent proposition is [12], where a control mechanism operating concertedly (and not sequentially as in [18])
on the size and the age of the cell is discussed. Namely, no major inconsistency with experimental data (for a single
growth condition) is observed by introducing a model where the splitting rate function �(s, ⇠) depends jointly on the
size and on the age of the cells and by best fitting the function to the data.

IV. THEORY: THE � MODEL OF CONTROL

The � model that we propose and discuss in the main text posits that the mechanism of control involves a
single variable, �, the size added to the cells since their birth. The purpose of this Section is to provide further details
on the model and its comparison to experimental data.

As in the previous Section, we shall denote by s the size of cells along the elongating axis of the rod. We shall
assume ds/dt = g(s) and the width of the cell is roughly constant. We indicate by s

b

and s

d

the size of cells at birth
and division. If s(t) is the size of a cell at the current time t, its added size is denoted �(t) = s(t)� s

b

. The density
of cells n(s,�, t) having size s and added size � obeys the following continuity equation

@

t

n(s,�, t) + @

s

[g(s)n(s,�, t)] + @

�

[g(s)n(s,�, t)] = ��(�)g(s)n(s,�, t) ; (13)

g(s)n(s, 0, t) = 4 g(2s)

Z 1

0

�(x)n(2s, x, t) dx . (14)

The left-hand side in (13) is the total time-derivative and the two drift terms are due to the elongation of the cells,
i.e. ds/dt = g(s) and d�/dt = g(s). As in the previous Sections on the sizer and the timer, the right hand side
accounts for the division of the cells. The Poissonian splitting rate function �(�) depends now on the added size �.
Proceeding as for (6) and (8), we obtain the relation

⇢

�

d

(�) = �(�) e�
R �
0 �(x) dx ) �(�) =

⇢

�

d

(�)

1�
R
�

0

dx ⇢

�

d

(x)
, (15)
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Figure S17. Comparison of bilinearity (black points) with E. coli experimental data (red points) for the fast growth conditions
glucose + 6 a.a., glucose + 12 a.a. and synthetic rich. The behavior of the size s

d

and the generation time ⌧
d

at division vs

the initial size s
b

are presented. A change of behavior should take place [18] at the size s⇤ (indicated by the vertical blue line)
but data do not support any such transition. In particular, for s

b

< s⇤ the division size s
d

should be independent of s
b

and for
s
b

> s⇤ the generation time ⌧
d

should be independent of s
b

. Neither one of these predictions is observed.

between �(�) and the distribution ⇢

�

d

(�) for the size added at division (�
d

= s

d

� s

b

) of individual cells. By
individual cells we mean that cells should be weighted equally, tracking them individually and avoiding known bias
e↵ects related to the speed of reproduction [14]. As in the equation (1), the conversion of the rate of division to
unit time involves the Jacobian |d�/dt| = g(s), that appears then in the right hand side of (13). Finally, (14) is the
boundary condition that accounts for cells having all � = 0 at birth, irrespective of their size 2s that gets halved.
The integral

R
�(x)n(2s, x, t) dx represents the total number of cells that divide in the unit time; as in (1), the factor

4 is the product of the factor 2 resulting from the 2 ds width of the range of dividing cells and the factor 2 due to
division producing two newborn daughters cells.

A series of relations analogous to those obtained for the sizer model can be derived from (13) for a general
splitting rate �. Integrating (13) over s and � and using the boundary condition (14), we obtain

@

t

ln

Z
n(s,�, t)dsd� =

Z
g(s)�(�)

n(s,�, t)R
n(s,�, t)ds d�

ds d� ⌘ hg�i . (16)

Multiplying (13) by s and integrating over s and �, we derive for the average size

@

t

hsi = hg(s)i � k hsi, (17)

where the rate of growth of the population k = hg(s)�(�)i from (16). For a linear elongation, g(s) = u, (17) gives for
the size at equilibrium hsi = 1/h�(�)i. For an exponential elongation, g(s) = ↵s ln 2, (17) yields ↵ ln 2 = k, i.e. the
value hs�(�)i = 1 for the correlation between the size and the splitting rate function.

Finally, we can obtain the following series of relations for higher order moments at the steady state :

(1�m)hsm�qi � qhsm+1�q�1i = 21�m

�

q,0

hsm+1

�(�)i � hsm+1�q

�(�)i , m � 0 , q � 0 , (18)

where we specified relations for the case g(s) = ↵s ln 2 and we used k = ↵ ln 2 and hs�i = 1 derived previously.
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Figure S18. Calibration of the � model for the control of the cell size. The elongation rate of the cells is an iid random
variable drawn from the E. coli experimental distribution, ⇢ex

↵

(↵) (red dots) in the plots of panel (A) for the seven di↵erent
growth conditions presented in Figure S13. Correlations among elongation rates of mother and siblings are weak and thus
not taken into account. We verified that results are not modified by including them. The black curves are the results of the
numerical simulations. The splitting rate �(�) is computed as detailed in the text (see (15)) from the distribution ⇢ex�

d

(�) of
the increments at division �

d

= s
d

� s
b

. In panel (B) we show the experimental distributions (red dots) for the same growth
conditions as in panel (A). The curves in black are the results of numerical simulations of the model detailed in the text. Their
agreement with the experimental curves confirms that the parameters of the model are appropriately calibrated. Similar curves
are obtained for B. subtilis.

A. Comparison and consistency with experiments

The comparison with experimental data for the � model proceeds as for the sizer mechanism. The elongation
rate g(s) and the splitting function �(�) are extracted from experimental data, namely from the distribution of the
sizes at division and the distribution of the elongation rates, and we use them to simulate the cell size control process
at the level of individual cells. We then compare statistical observables alternative to those used for calibration, in
order to assess the validity of the model.

The calibration of the model goes as follows. The elongation rate for individual bacteria is obtained by
exponential fits of the experimental curves of size versus time. The probability densities ⇢ex

↵

(↵) of the resulting
elongation rates in the various growth conditions are shown in Figure S18. In our numerical simulations we draw
values of ↵ randomly from ⇢

ex

↵

(↵), neglecting (as for the sizer case) weak correlations between the elongation rates of
mother and daughter cells. The splitting rate �(�) is computed using (15) with the probability of the size increments
at division �

d

⌘ s

d

� s

b

read directly from the experimental data ⇢ex
�

d

(�) (see Figure S18).

The distribution of the elongation rates ↵ and the splitting function �(�) extracted from the experimental
data as we just described are used to simulate the dynamics of a bacterial colony. Each cycle of elongation of a cell
proceeds at the constant (random) rate ↵ and division occurs with the Poissonian rate �(�), which depends on the
size increment � only. After an initial transient, distributions for the various observables reach a stationary form and
the resulting numerical distributions for the added size at division �

d

= s

d

� s

b

and ↵ (used to calibrate the model)
compare to the experimental ones as shown in Figure S18.

Distributions of size and age at division. A first test for the � model is provided by the curves in Figure S19
showing the agreement of the distributions for the final size s

d

and for the generation time ⌧
d

= log
2

(s
d

/s

b

)/↵ (where
the values of the various quantities are those of individual bacteria). The corresponding results for B. subtilis are
shown in Fig. S20. Most importantly, the model by its very definition agrees with the s

b

-independent curves of the
conditional probability P (�

d

|s
b

) shown in the main text.

Correlations of the size across generations. An additional test for the model comes from the correlations of
the size among genealogically related cells. Some of the correlations below have been calculated in Ref. [22] by a
slightly di↵erent procedure. Correlations between the added length of the mother �M

d

and the daughter, �D

d

are
experimentally found to be small so we shall neglect them hereafter.

Let us start by the correlation C(p)

dd

⌘ hsM
d

s

D(p)

d

i between the size at division of the mother and its p-th
generation descendant. For example, p = 1 gives the correlation between the sizes at division of mother and daughter
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Figure S19. Test of the � model for the control of the cell size. The model calibrated as in Figure S18 is simulated numerically
and the E. coli distributions of the generation time ⌧

d

= log2(sd/sb)/↵ and the size s
d

at division of the cells are reported in
panels (A) and (B), respectively, for the various growth conditions. Red dots refer to experiments while black curves are the
numerics. The agreement of theoretical predictions with experimental data confirms the validity of the � mechanism for the
control of the cell size.
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Figure S20. Test of the � model for B. subtilis. As in Fig. S19, the distributions of the generation time ⌧
d

= log2(sd/sb)/↵
and the size s

d

at division of the cells are reported in panels (A) and (B), respectively, for the various growth conditions. Red
dots refer to experiments while black curves are the numerical predictions.

cells. The decay of the correlation function is computed by the formula
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where we have used that h�
d

i = hs
b

i = hs
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i/2, as can be easily derived from s
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connected part of the correlation function C
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The comparison with the numerical simulations is shown in Figure S21. By similar arguments we can show that the

correlation function for the size at birth C

(p)

bb

= �

2

s

b

/2p where the variance of the size at birth �2

s

b

= hs2
b

i�hs
b

i2 ' �

2

s

d

/4
because the size is (roughly) halved at division. The scaling is confirmed in Figure S21. Finally, the mixed correlation

C

(p)

bd

= C

(p)

bb

because the added size is statistically independent of the initial size.
The positive correlation between the sizes across generations is quite intuitive to grasp. An ancestor cell bigger

than the average will generate progeny that statistically relaxes to the average size, as we showed in the main text
and the Figure S9. The fact that the added length is independent of the initial size makes that progeny will inherit
only part of the ancestral size, which is successively halved as generations proceed. That accounts for the positive
correlations and its 1/2 rate of decay across generations.

Notice that the previous results give for the Pearson correlation coe�cient between the size at birth and at
division :
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which accounts for the behavior of experimental data observed in Figure 1D of the main text. It also follows from
s

d

= s

b

+�
d

and s

b
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/2 that for the � model
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We conclude that the coe�cients of variation CV of the three quantities are
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3
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. (23)

Predictions are in excellent agreement with the experimental data presented in the main text. The coe�cient of
variation of s

b

is actually slightly larger than CV

s

d

before s

b

is also a↵ected by the noise in the positioning of the
septum. We neglected here that source of noise because it is small; when included, it leads to CV

s

b

being slightly
larger than CV

s

d

, as observed in the main text.

Correlations of generation times. Generation times ⌧
d

= 1/↵ log
2

(s
d

/s

b

) involve a logarithm, which a
priori is not obvious to treat. However, we can circumvent the problem using that the average of logarithms involve
typical fluctuations around the mean and the observation that the coe�cient of variation of s

b

and �
d

are relatively
small. We can then derive approximate expressions for those correlations. Neglecting for simplicity the small noise in
↵, i.e. ↵ = h↵i below, we expand ⌧
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where ��
d

and �s

b

denote fluctuations with respect to their respective mean values and we used hs
b

i = h�
d

i (see
(22)). Second-order terms will not be needed as they cancel out from the correlations we shall compute below.

From (24) we obtain for the mean, the variance and the coe�cient of variation of ⌧
d

:

h⌧
d

i ' 1

↵

; h⌧2
d

i � h⌧
d

i2 ' 1

4↵2 ln2 2

"
�

2

�

d

h�
d

i2 +
�

2

s

b

hs
b

i2

#
=

1

↵

2 ln2 2

�

2

s

b

hs
b

i2 ) CV

⌧

d

=
CV

s

b

ln 2
=

CV

�

dp
3 ln 2

, (25)

where we used (23) in the second equation. The ratios of the coe�cients of variation are in excellent agreement with
the experimental data presented in Fig. 4B of the main text.

Similarly, we can compute the mean value and the variance for 1/⌧
d

, which read :
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and derive then
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The expression (27) was used in Figure 1C of the main text to fit the dependency of the initial size versus the number
of divisions per hour, in given growth conditions. The fitting curve was written as s

b

= c

1

1

⌧

d

+ c

2

and it is verified
that the constant c

1

is then equal to the correlation (27).

We can also derive the correlation between s

b

and the generation time ⌧
d

as
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where we used (25). The reason for the negative sign is quite intuitive. Indeed, the elongation at a size s proceeds
at the rate ↵s ln 2, i.e. the longer the cell, the faster it grows. Therefore, if s

b

is larger/smaller than the mean it will
take less/more time to complete the addition of the size �

d

(independent of s
b

).
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Figure S21. Correlations in the � model. We simulate the process under the � model and assume no correlation between
the �

d

of the mother and its siblings. The connected correlation function hsM
d

sD(p)
d

i � hsM
d

ihsD(p)
d

i, divided by its value �2
s

d

for p = 0, is plotted as a function of the generation p in panel (A). The line is the prediction derived in the text 2�p while the
dots are numerical values. The corresponding correlation for the newborn size s

b

is shown in panel (B). Finally, the connected
correlation of the generation time defined in (29) as a function of the generations p is shown in panel (c). The best fit for the
decay is the exponential behavior �0.43⇥ 2�p, confirming the behavior derived in the text.

Finally, we can explicitly compute the decay of the correlations among the division times across generations. We

indicate by ⌧M
d

the generation time of the mother and by ⌧D(p)

d

the generation time of a p-th generation descendent.
For instance, daughters correspond to p = 1. We are interested in the behavior of the correlation
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Using (24), we can approximate the correlation by
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where we used that ��D(p)

d

is independent of all other fluctuations in the � model and the expression (25) of the

variance �2
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in terms of the coe�cients of variation. Note that the mean hsD(p)

b

i is the usual value of the mean
(una↵ected by the mother’s fluctuations) as corrections would yield higher-order corrections.
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Using (23), we obtain for the correlation between mother and daughters C(1)

⌧

d

⌧

d

⇠ � 1

4

. The behavior (31) is consistent
with the experimental data in the Figure S12 and in the main text and with the results of numerical simulations
in Figure S21 (small corrections to the constant prefactor are due to the noise in the positioning of the septum and
fluctuations in the elongation rate ↵; we explicitly verified that in their absence the constant agrees indeed with (31)).
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Anticorrelations between the generation times of the mother and its descendants are intuitive. Let us consider
a given initial size for the mother. As its generation time becomes longer, the mother will divide bigger and will then
tend to have descendants with a bigger newborn size. The size at birth and the generation time of a cell tend to be
anticorrelated. This follows intuitively from the definition 2↵⌧d = s

d

/s

b

= 1+�
d

/s

b

and the fact that the added size
is independent of the initial size, i.e. it takes less to add the fixed amount �

d

if the cell elongates faster (see (28)
and (32) for a more formal proof). Combining the two statements above we conclude that the division times of the
mother and its descendants are anticorrelated.

Correlations involving exponentials of the generation time. We conclude this Section by computing some
correlations involving exponentials of the generation time. The reason is that since 2↵⌧d = s

d

/s

b

, correlations do
not involve any logarithm and we can demonstrate anticorrelations without any hypothesis on the strength of the
fluctuations. We first show that the initial size and 2↵⌧d are anticorrelated in the � model :
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Here, we used h�
d
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d

i/2, and the inequality hxih1/xi � 1 holding for any positive-definite random variable

x (as it can be proved for example by the Cauchy-Schwartz inequality 1 =
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The exponentials of the division times of the mother and its daughters are also anticorrelated. Indeed :
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where we have used again that in the � model, the added size �
d

is statistically independent of s
b

. Subtracting then
the disconnected contribution
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and using again h�
d
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i, we finally obtain
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V. COLLAPSE OF THE PROBABILITY DISTRIBUTIONS AND SCALING FORMS

It was recently observed in [11] that intra- and inter-species distributions of body sizes have a universal form
across many species. The universal form seems to be uniquely determined by the mean of the distribution, i.e., when
the various distributions are rescaled by their mean, they tend to collapse onto a unique curve. This recent remark
generalizes analogous, classical observations made for di↵erent bacterial populations and growth conditions [23; 24],
that we also reported in the main text for our experiments on E. coli and B. subtilis. The aim of this final Section is
to present theoretical results showing that the property of scale invariance is common to all size distributions, viz. s

b

,
s

d

and �
d

. In other words, if one of the three distributions is scale-invariant, the others as well inherit that property.

The distribution ⇢
Z

(z) of a (generic) random variable Z is scale invariant if it has the form :

⇢

Z

(z) =
1

hZi�
✓

z

hZi

◆
, (36)

where � is an arbitrary non-negative normalized function. The statistics of Z is supposed to change with conditions,
e.g. of the environment or nutrients. The non-trivial content of the scaling form (36) is that when conditions are
varied, the distribution will be modified, yet its shape remains invariant when properly rescaled by the new mean
value of Z. The form (36) also implies that, when conditions are varied, the normalized moments hZpi/hZip will
remain constant. Finally, the scaling form (36) is also equivalent to the statement that the Laplace transform L

Z

(u)
of the distribution ⇢

Z

has the form L
Z

(u) =  (uhZi), where u is the Laplace transform variable and  is an arbitrary
function (respecting the general constraints for the Laplace transform of a probability distribution).

Let us start by showing that if the scaling form (36) holds for the distribution of the cell size either at division
s

d

or at birth s

b

, then it holds also for the other quantity and for the distribution of the added size at division �
d

.
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Indeed, if noise in the halving of the sizes at division is neglected, s
d

= 2s
b

. The distributions for s
d

and s
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are then
related as ⇢
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) and the scaling form of either one of the distributions clearly implies scale-invariance for
the other. Moreover, since s
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, we have

L
s

d

(u) = L
s

b

(u)⇥ L
�

d

(u) , (37)

where L indicates the Laplace transform of the respective probability distributions. Using s
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= 2s
b

we have
L
s
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(2u)/L
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(u) = L
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(u) and therefore the distribution of the added size inherits the scale invariance of s

b

(if
the latter has it).

If noise in the halving at division of the size of daughters is included, the argument is slightly more involved.
We use s

d

= �s

b

, where � is a random variable centered around 2. We shall assume that the distribution of � does
not change as the means hs

b

i and hs
d

i vary with growth conditions. Taking the logarithm of s
d

= �s

b

, we have
again a sum and the Laplace transforms of the logarithms of the three variables are therefore related as in (37). The
scale-invariant form (36) implies for the Laplace transform of the distribution of lnZ that L

lnZ

= hZi�u

 (u), where
 is arbitrary yet it does not contain hZi. Using that hs

d

i = 2hs
b

i = h�ihs
b

i (which is valid in any growth condition),
one can verify that if either s

b

or s
d

is scale-invariant, the other variable will inherit that property.
Finally, we show that scale invariance (if present) is also inherited by the size distribution n(s,�, t). The

equation for its dynamics is (13), which reduces to

kn(s,�) + @

s

(g(s)n(s,�)) + @

�

(g(s)n(s,�)) = ��(�)g(s)n(s,�) , (38)

in the stationary state with the growth rate k defined by (16). Taking g(s) = ↵s and using hsi / h�i, one can verify
that a scaling form for n(s,�) is indeed compatible with (38).

A more explicit way to relate n(s,�) to the distributions of � and s

b

involves the integration of (38) along
the characteristics and the tracking of cells from the current time t back to their last division. For that purpose, it is
convenient to introduce the age ⇠ of a cell, as in Section III.B, so that
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= g(s) , (39)

during the elongation of the cell. The initial size s
b

= s(0) and �(0) = 0 are the initial conditions. The equation (38)
is rewritten as
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where F (s,�) = k + @

s

g(s) + �(�)g(s). We can then track each cell back to its birth :
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For the exponential elongation rate g(s) = ↵s ln 2, equation (17) gives k = ↵ ln 2 and we have that
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where we have used (15) to express e
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) in terms of ⇢
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. it is immediate to verify that if ⇢
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scale-invariant, so will n(s,�) be. Integrating (42) over �, we obtain for the marginal n(s) at the steady state :
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VI. FURTHER DETAILS ON THE RELATION BETWEEN FIGURE 1C AND THE CONSTANCY OF THE CELL MASS
AT INITIATION OF REPLICATION

W.D. Donachie proposed in [25] that the mass of the cells (per origin of replication) at the time of initiation of
the chromosome replication, is independent of the growth rate. Mass and volume will be used interchangeably here
as the density is known to be roughly constant. The argument in [25] is based on two premises :
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Figure S22. Scheme of the events of initiation of replication and cell division. C denotes the average time for chromosome
replication, D is the average time for cell division and the cell average doubling time is denoted here by T . The sum C + D
is supposed to be constant for di↵erent T . The figure shows that the time separating chromosome initiation to the closest
successive cell division is C+D�2T . The scheme drawn here refers to those situations where bC+D

T

c = 2, i.e. 2T  C+D < 3T .
In the general case where the integer bC+D

T

c = r, i.e. rT  C +D < (r + 1)T , the corresponding time is C +D � rT .

(i) The sum of the average time C for chromosome replication and the average time D for cell division is
constant in diverse growth conditions. Growth conditions are supposed to be fast, i.e. the cell average doubling time,
denoted here by T , satisfies T  C +D. The doubling time controls the average volume of cells of age ⇠ as

hV
⇠

i = hV
b

i 2⇠/T , (44)

where hV
b

i is the average volume at birth. The constancy of C + D was supported by the experiments in Ref. [26]
(with C +D ' 60 minutes).

(ii) The average volume (mass) of newborn cells scales with T as hV
b

i / 2
µ

T

�1, where µ is a constant and T is
the doubling time defined above. Such behavior of hV

b

i was obtained in Refs. [4; 5] (with µ ' 60 minutes).

Ref. [25] derives the consequence of (i) and (ii) for the time of the initiation of chromosome replication. As
shown in Figure S22, the time separating chromosome initiation to the closest successive cell division is C +D � rT ,
where r is the floor of C+D

T

, i.e. the integer satisfying rT  C + D < (r + 1)T . Therefore, the age of cells at the

initiation time is T � (C +D � rT ) = (r + 1)T � (C +D). It follows from (44) and hV
b

i / 2
µ

T

�1 that the average
volume of cells at the initiation time is

hV
I

i = hV
b

i 2r+1�C+D

T / 2r�
C+D�µ

T

. (45)

The remark in Ref. [25] is that the expression (45) reduces to 2r if µ = C+D, which is precisely the equality obtained
in the experiments. Furthermore, it is easy to verify from Figure S22 that the number of origins of replication present
at the time of initiation is 2r. The major ensuing conclusion is that if hypothesis (i) holds and if µ = C +D, i.e. if
the average volume of newborn cells scales as

hV
b

i / 2
C+D

T

�1

, (46)

then the average mass per origin of replication at the time of initiation is a constant independent of T . Notice that
the average volume hV

b

i of newborn cells is equal to the average volume h�V

d

i added at division, which is the key
quantity in the � model. The average volume added at division is related to the size added at division �

d

discussed in
previous sections by the relation �V

d

= const.⇥w

2�
d

, where w is the width of the cell (which stays roughly constant
over the cycle of growth) and the constant reflects the rod-like shape of E. coli cells. The equality hV

b

i = h�V

d

i is
generally valid since hV

d

i = 2hV
b

i = hV
b

i+ h�V

d

i.
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Assuming the validity of Donachie’s arguments, equation (46) can be used to estimate the value of C+D from
the scaling of hV

b

i vs T (see, e.g., [21]). This procedure yields the estimation C +D ' 66 minutes for E. coli data in
Fig. 1C of the main text.

VII. CONSTANCY OF TOTAL MASS OF CONSTITUTIVE PROTEINS WITH RESPECT TO GROWTH CONDITION

The starting point of Scott et al. [27] is two fundamental correlations between the fraction of ribosomal mass
of the proteome, �

R

, and the average growth rate, �, for a given growth condition. The two correlations are

h�
R

i =
⌦
�

min

R

↵
+ ↵ h�i (47)

h�
R

i = h�max

R

i � � (h�i) h�i , (48)

where
⌦
�

min

R

↵
⇡ 0.07 and h�max

R

i ⇡ 0.55 for E. coli MG1655 and B/r and
⌦
�

min

R

↵
⇡ 0.04 and h�max

R

i ⇡ 0.49 for E. coli
NCM3722. The slope ↵ = 0.18± 0.1 is a positive constant for the three di↵erent E. coli strains. The slope � depends
on the growth condition (namely, h�i), but is constant under a given growth condition. Asymptotically, � can vary
between 0 and 1 as the growth condition changes from rich to poor growth media, respectively.

The above two correlations were obtained from the following experiments. For the first correlation (Eq. 47),
h�

R

i of a steady-state population was measured for each growth condition h�i, adding additional information to the
growth law (Ref. [4]; Eq. 44; Figure 1C in the main text). For the second correlation (Eq. 48), multiple experiments
with varying sub-lethal dosage of chloramphenicol (Cam) were performed to measure h�

R

i and h�0i for a given growth
condition h�i. Each set of experiments were repeated for other growth conditions.

The invariance of �max

R

< 1 is important. Scott et al. [27] interpreted this constancy as that the rest of the
proteome fraction, 1� �

max

R

, consists of house-keeping proteins, Q, but in general it can be a basal level of any non-
ribosomal proteins. Importantly, since �max

R

is constant, �
Q

= 1� �

max

R

is also constant under all growth conditions.
Once we accept this and that the proteome consists of only three types of proteins [ribosomal (R), non-ribosomal (P )
and their basal level (Q)], we can predict their relative mass fractions for any growth conditions.

Cell cycle proteins and nutrient transporters belong to P sector, and their total mass fraction of the total
proteome can be obtained by solving Eqs. 47 and 48 for h�

P

i = h�max

R

i � h�
R

i, leading to

h�
P

i = � (h�i)
↵+ � (h�i)

�
h�max

R

i �
⌦
�

min

R

↵�
(49)

= h�max

R

i �
⌦
�

min

R

↵
� ↵�. (50)

The total mass of the P -sector proteins per cell with respect to the per-cell total proteome can be estimated
by multiplying the average volume hV i of the cells for each growth condition and h�

P

i. The growth law is given
by hV i = 0.24 · hV

0

i e0.81h�i for NCM3722 (this work), hV i = 0.41 · hV
0

i e0.62h�i, hV i = 0.33 · hV
0

i e0.70h�i, hV i =
0.29 · hV

0

i e0.77h�i, and hV i = 0.52 · hV
0

i e0.67h�i for B/r H266, B/r K, B/r A, and BilvA thyA, respectively [28]. h�
P

i
with the experimental parameters ↵,� (h�i) ,�min

R

,�

max

R

were reported in Scott et al. [27].
For the range of the average growth rate h�

P

i was measured, the total number of proteins in P sector is
remarkably constant in E. coli (Figure 4, main text).
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VIII. APPENDIX

A. Background: development of the adder model in this work (by Suckjoon Jun)

The central thesis of our work is that bacterial cells grow by a constant size � between birth and division.
What initially led us to this discovery was the correlations analysis of our published data in [3]. Specifically, we
studied the relationship between the newborn cell size (s

b

) and the dividing cell size (s
d

). Our expectation was that
the dividing size would be roughly 2 times the newborn size (s

d

= 2s
b

). However, the linear fit of the correlations
systematically deviated from the expected s

d

= 2s
b

. Instead, we found s

d

= s

b

+ � (Figure S23). For almost one
year from 2011 to 2012, we repeated our analysis investigating any possible errors in image and data analysis, and
always reached the same result, s

d

= s

b

+�. In the mean time, we were extending our experiments in [3] to other
growth conditions and also other organisms, especially, B. subtilis.

newborn length (µm)

di
vi

sio
n 

le
ng

th
 (µ

m
)

sd = 1.08.sb+2.7

0 5

5

0

10

Figure S23. sd = sb +�.

On August 21, 2012, Johan Paulsson visited our lab then at the FAS Center
for Systems Biology at Harvard University to discuss cell size control. During our
meeting, Taheri-Araghi presented his s

d

= s

b

+ �. Upon seeing this, Paulsson made
a profound remark that a relationship like “y = x + �” exists in his field of plasmid
copy-number control. Importantly, its interpretation is that cells control the average
plasmid copy number by adding a constant number N

c

of plasmids in each generation,
irrespective of the number of plasmids the cell is born with. In the dynamical process, it
is straightforward to show that this ensures copy-number homeostasis with the average
copy number being N

c

itself. In the case of cell size control, s
d

= s

b

+ � would then
mean that cells sense neither size nor time, but add a constant mass � irrespective of
the initial cell size s

b

.
After our meeting with Paulsson, we had to make a decision. On the one hand,

we had a potential text-level discovery that virtually no one in bacterial physiology and
cell size control were aware of (with one exception of Koppes and his closest colleagues;
see Sec. VIII.B). On the other hand, correlations can su↵er from degeneracy of di↵erent
models that result in the same correlation coe�cients, mask important causal relationships, but, more important, we
only had data for only one growth condition for two E. coli strains (K12 MG1655 and B/r). Due to the limited data,
we realized we cannot make a general claim of the constancy of �. For this reason, we concluded we needed more
data from a wide range of physiological conditions as well as di↵erent organisms and strains, although it was clear
that a complete investigation was going to take several years of major e↵orts.

Here the experimental di�culty was that E. coli changes its dimensions in response to di↵erent growth con-
ditions. This is the growth law established in the 1950s, which states that the average size of the cells increases
exponentially with respect to the nutrient-imposed growth rate. In practice, what this means is that each growth
condition was a project of its own, because each growth condition required a new microfluidic device optimized for the
new cell dimensions. By persevering for more than two years, Taheri-Araghi managed to obtain the complete data of
quality and quantity that met our standard for E. coli. In the mean time, Sauls was extending our experiments to
Gram-positive B. subtilis and E. coli size mutants in collaboration with Taheri-Araghi and Levin’s lab.

Starting in late 2012, an intriguing feature emerged from our new data. That is, all probability distribution
functions from di↵erent growth conditions collapsed when rescaled by their respective means. This is a highly non-
trivial result. Fortunately, in early 2013 Vergassola pointed out an important reference by Rinaldo and colleagues [29]
on scaling properties of body size, which I consider as important an insight as the one by Paulsson. We immediately
started serious collaborations and divided our main responsibilities between experiment and modeling. This Extended
Supplementary Information presents the theoretical description by Vergassola and his post-doc Serena Bradde in its
final form (see Sec. III, IV, and V), which goes far beyond our preliminary modeling attempt in 2012 (Sec. VIII.C).

To us, obtaining rigorous and relevant experimental data that can pin down a model was the real issue. The
idea of constant � was originally and explicitly proposed by Koppes and colleagues in 1993 [30] and 1997 [31], who
called it an “incremental model” (see Sec. VIII.B). In the 1997 article, Koppes wrote

Ideally, what is required is a comprehensive set of data containing distributions of both size and time
between successive cellular divisions. Unfortunately, such measurements still have to be made.

This is precisely what we have done in our work.
Finally, size homeostasis requires neither perfect adder nor symmetric division. This explains why di↵erent

organisms such as yeast or size mutants achieve size homeostasis without having to be perfect symmetric adder. We
described this general quantitative adder principle in a recent reference [32].
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B. WJ Voorn, LJH Koppes, and NB Grover, Mathematics of cell division in Escherichia coli, Curr Top Mol Genetics 1,
187-194, 1993

To our knowledge, this is the first paper in which Koppes and his colleagues fully de-
veloped and presented what they called an incremental model (which is identical to
our adder principle). For example, they explicitly calculated the correlation coe�cients
between division and newborn size of E. coli B/r strains, and obtained 0.52 and 0.56
for two di↵erent growth conditions.

Unfortunately, this reference was published in a journal (Curr Top Mol Genetics) that
immediately and completely disappeared right after its first volume from the libraries in
the United States as well as online databases. Early this year, one of us (SJ) contacted
Voorn, who kept a reprint of this paper and kindly sent a high-resolution picture of every
page. For its historical importance, and for the reasons explained above, we include the
reference here.

Note that the abstract of this paper reads

Two statistical hypotheses for the occurrence of cell division were tested by observed
distributions of cell size during steady-state growth. The thirty year old so-called sloppy-
size model could be rejected, whereas the newly-developed incremental-size model was
accepted (by lack of alternative).
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C. Preliminary theory note by Taheri-Araghi, September 28, 2012

For readers interested in the initial development on the theory front, we included an
original preliminary theory note written by Taheri-Araghi. This summarizes our under-
standing of the consequences of constancy of � as of September 2012 soon after our
meeting with Johan Paulsson. This was primarily at the correlations level based on
limited date sets in Wang et al. [3]. As explained in Section VIII.A, a complete, inde-
pendent theoretical framework was established only after Vergassola and Bradde joined
with the on-going acquisition of new experimental data.
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0.1 Introduction

The life cycle of an Eschirichia coli cell from an outsiders point of view consist
of growth in size, ended by division of the cell in half. Complex molecular
mechanisms drive and control this cell cycle, on which our knowledge is still
at early stages. A precise quantitative picture of cell size evolution over a cell
cycle, and coordination between size and division can shape our fundamental
understanding on growth, cell cycle, and the molecular circuits that control this
process under the hood.

In this study, we investigate the coordination between cell size and division
of E. coli during steady state growth. Specifically, we challenge the general belief
that cells “double up” their size during their life cycle. We analyzed growth of
thousands of E. coli cells in “mother machine”, a high throughput continues
culture microfluidic device.

Quantitative analysis of cell level parameters, such as size, elongation rate
and generation time, reveals a remarkable, yet simple, coordination between
division and cell size: the cell mass increase during each cell cycle is constant
regardless of the cell size at birth. That is, E. coli cells somehow measure the
amount of mass they accumulate after birth. Once reaching a critical value,
depending on the growth condition, cells divide into two viable daughters. This
finding argues against models that propose cells measure their size to trigger
division and models that picture a constant timer controlling cell division. How-
ever, at a population average, it is consistent with that the cell size at division
is twice the size at birth.

0.2 Steady state growth from a single cell per-
spective

We used mother machine to collect data on the growth and cell cycle of 7,300
single cells in the steady state growth. Images of growing cell, collected by time
lapse microscopy, analyzed by custom developed image analysis software and
single cell parameters are quantified essentially in terms of four independently
measured parameters:

• `: the length of a cell at birth (newborn length)

• L: the length of a cell just before division (division length)

• T : the generation time of a cell

• �: the elongation rate, as defined for one dimensional growth of a cell
below.

In this work we, put an emphasis on precise quantitative analysis of the data
obtained from the experiment. Specifically, we investigate not only the average
and fluctuations of di↵erent parameter, but also the correlation among them
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and eventually develop an analytical model to explain the results and provide
insights on cell size control mechanism in E. coli cells.

0.2.1 How big is the variations in cell size?

A previous study has shown E. coli cells have a robust growth mechanism over
hundreds of generation where the their elongation rate remain constant regard-
less of the replication age of cell. In other words, cells do not get slow in growth
as they age, even though the probability of fillamentation becomes larger. While
cells maintain a constant elongation rate and robust growth, their size and gen-
eration time do fluctuate over 20% of the average value. This level of size
variations indicates that there should be a mechanism that controls the fluctu-
ations in a populations of the cells. An obvious question in this context is that
what happens to those cells who are much larger, or smaller, than the average
population size? How do they catch up with the average size?

Fig. 1 shows histograms of cell size at birth (left panel) and division length
(right panel). The distributions are not symmetric, later in this study we show
that they are approximately lon-normal distributions.
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Figure 1: Normalized distribution of newborn cell length (left panel) and cell
length at division right panel. Distributions are asymmetric (non Gaussian).

Fig. 2 demonstrates an scatter plot of division length as a function of new-
born length. The red line that passes through the scatter points is the best line
fit to this data points. There are two points in this graph that deserve some dis-
cussion. First, the division length is correlated with the newborn length. This
implies that, if a cell is born larger than the average, its size at division will be
likely larger than average too, yielding larger than average daughter cells. While
this may seem inconsistent with an active mechanism controlling the cell size,
the second thing we want to point out is the slope of the fitted line. Consider,
hypothetically, the slope of the line was two. That would imply the size of a
cell at division is twice the newborn size resulting in daughter cells with same
size as previous generation. A slope smaller than two, however, indicates that
daughter cells have a size closer to the average size compared to the newborn
cells of the previous generation.

2



What is evidence here is that, cells who deviate from average size do get
back to the average size but this does not happen in one generation. In the next
section, we show how cells coordinate growth to catch up with an average size
of the cell.

Figure 2: Length of cells right before division as a function of their newborn
length for a total number of 7,300 mother cells in steady state growth. The
slope of the fitted line, 1.03, is an indication of an active mechanism controlling
cell size as opposed to doubling cell mass during a cycle.

0.2.2 How do cells control their size?

At a cell level observation, we can quantify the growth in terms of elongation
rate and generation time. Elongation rate denotes how fast cells grow and
generation time denotes how long they grow before division. Here, we illustrated
the correlation of these two parameters with newborn cell size.

Figure 3 depicts scatter plots of cell elongation rate (left panel) and genera-
tion time (right panel) versus newborn cell size. Elongation rate does not show
any significant correlation with cell size. On the other hand, generation time
shows a strong negative correlation with newborn size.

To further analyze this observation, we have binned cells based on their
newborn size and plotted the average elongation rate and average generation
time in each bin. Figure 4 shows the average elongation rate (left panel) and
average generation time (right panel) of each bin as a function of newborn
cell size. The error bars show the standard deviation in each bin. For both
elongation rate and generation time, the standard deviations seems similar in
di↵erent bins.

One important observation here is that normalized standard deviation for
generation time is larger than that of elongation rate. For a quantitative com-
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Figure 3: Scatter plot of elongation rate (left panel) and generation time (right
panel) as a function of newborn cell size. Elongation rate does not show any
correlation with size while cells generation time is negatively correlation with
their size at birth.

parison, we have chosen one bin and normalized a histogram of both variables as
plotted in figure 5. The generation time has a standard variation of � = 0.144
while the elongation rate standard deviation is sigma = 0.077. In such stochas-
tic systems, the parameter with a higher fluctuation eventually dominates the
systems fluctuation. In the next section, we use this fact to reduce the complex-
ity of our theoretical model considering all the fluctuations in size come from
variations in generation times.
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Figure 4: Elongation rate and generation time as a function of newborn cell
size.

0.2.3 Experiment condition

The experiment is conducted on SJ288 strain in rich MOPS media at 30C.
Mother machine device was made from SJ110 microchannel set. The growth
media was continuously injected to the device at 3,000 µl/hr. Microscopy is
performed with Nikon Ti using 100X oil immersion lens with bright field phase
contrast. Images from the mother machine device acquired at 10 di↵erent fields
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Figure 5: Normalized elongation rate and generation histogram for a bin of
figure 4. The generation time has a wider distribution with � = 0.145 compared
to elongation rate with � = 0.077.

of views at 2 min intervals. LED illumination was used at 100% power with
exposure time of 70ms for each image acquisition.

0.3 Quantitative model for growth

0.3.1 Quantitative model for in depth understanding of
cell size control mechanism

Based on our experimental observations, we put forward an analytical model
for growth and cell cycle of E. coli cells. Our model essentially describes the
strategy that E. coli cells apply to control their growth and division in each
cell cycle. The model is at a single cell level, yet has the power to predict the
distributions and correlations between cell size, elongation rate and generation
time. In the following, we present the model and then test the model with the
data we have collected from E. coli cells.

Assumptions of the model. The model is constructed upon a few assumptions
that we have itemized below. This assumptions are based on our single cell
observation.

• Growth of E. coli in steady state is one dimensional. That is, the cell
maintains a constant width during the growth and upon division. The
mass of the cell is thus proportional to the length of the cell. Here and
in what follows, length and elongation rate is used to characterize “size”
and “size increase rate” of the cells.

• Cells are evidenced to grow exponentially during a cell cycle. Quantita-
tively, the relationship is L = `⇥2�T where L the is cell length at division,
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` the newborn length, � the elongation rate, and T is the generation time.

• Elongation rate is constant while generation time is a stochastic variable
correlated with cell size. As demonstrated in the previous section, the
coe�cient of variations of elongation rate is two folds smaller than that of
generation time. That is, it’s e↵ect on cell size variation is about 4 times
smaller than that of generation time. To establish a robust model with
the smallest number of fitting parameters, we assume the elongation rate,
�, is constant during a cell cycle and is the same for all the cells in the
population. On the other hand, the generation time, T , is a stochastic
variable, correlated with newborn cell size. This correlation and the noise
and fluctuations of T will be discussed below.

Functional form of generation time. The generation time can be divided into
two compartments: the deterministic part and the noise part, T = Tn+Td. The
deterministic part is a function of the newborn cell size, yielding the correlation
between generation time and cell size, Td = Td(`). The noise part, Tn, consis-
tent with the observations, is assumed to be a Gaussian variable with a constant
coe�cient of variations, independent of the cell size. As the first step for devel-
oping the model, we work out the functional form of the deterministic part of
the generation time, Td. To keep the generality of the model, we construct the
function such that it interpolates between two plausible cell cycle models, con-
stant timer model and constant division size model (see below for details). We,
however, argue that non of these limiting models are correct and we conclude
that cells behavior is somewhat in between, which is explained quantitatively as
a model in which cell mass increase is the same in each cell cycle, regardless of
the newborn size. This model predicts that any deviation from average cell size
will be corrected in a few generations and cell size fluctuations remain constant
over di↵erent replicative age. An interpolating parameter, which is eventually
determined by fitting, indicates in which model the cells are behaving.

Asymptotic models. The two asymptotic models for cell cycle that we inter-
polate between are constant generation time and constant cell size at division.
In the former, cell adjust the generation time to the average expected value
depending on the growth condition regardless of the newborn cell size. In the
latter, a cell grows until it reaches a especial size, let’s say 2⇥ `, before division.
Generation time for these limiting cases can be formulated, respectively, as:

Td =
1

�
(1)

Td =
1

�
+

1

�
log

✓
`

`

◆
(2)

Interpolation function. These two limiting models may sound appealing,
but we can readily argue that non of these may hold for E. coli growth; in
the constant timer model, the fluctuations in size only arises from noise in
the generation time. In such a model, noise in the cell size accumulates over
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generations – no mechanism to control the fluctuations. In the constant division
size model, cells divide upon reaching an especial cell size appropriate for cell
division. in this model, there will be no correlation between cell size at division
and newborn cell size. We use an interpolating parameter ↵ to bridge between
these two cases. The generation time is then defined as

Td =
1

�
+

↵

�
log

✓
`

`

◆
(3)

The interpolation parameter ↵ can be eventually obtained by fitting Eq. 3 to
experimental results. The ↵ obtained from fitting indicates the cells behavior
in growth and cell size control.

Special case at ↵ = 0.5 : constant mass increase in each cycle. Before
proceeding to fitting the generation time to experimental data. We would like
to point out that the mid point of the interpolation, at ↵ = 0.5, is an special
case that the length increase in each cell cycle is constant `. This can be shown
as below:

L = `⇥ 2�Td

` = �L = `⇥ 2�Td � `

`/`+ 1 = 2�Td

log
�
1 + `/`

�
= �Td.

(4)

since `/` ⇡ 1, at the first order approximation, log
�
1 + `/`

�
⇡ 1+ 0.5 log

�
`/`
�
.

Substituting it back in Eq. 4, we obtain:

Td =
1

�
+

0.5

�
log

✓
`

`

◆
(5)

comparing Eq. 5 with Eq. 3, we see ↵ = 0.5 approximately corresponds to the
case that cell length increase is constant, `, during each cell cycle, regardless of
the newborn size.

Derivation of the distributions. Here we derive an analytical expression for
the distributions of newborn cell size and generation time. Starting from the
generalized form of Td in Eq. 3 we can proceed calculating newborn size of a
new generation based on the previous generation parameters, assuming precise
cells division.

The generation time is given as,

T = Td + Tn

T =
1

�
+

↵

�
log

✓
`

`

◆
+ Tn. (6)

Length of a new generation can be written in terms of previous generation
parameters:

L = `⇥ 2�T
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`new =
1

2
`prev ⇥ 2�T . (7)

Substituting Eq. 6 in Eq. 7, and reordering the results we obtain:

log

✓
`new
`

◆
= log

✓
`prev
`

◆
+ �Td + �Tn � 1

= log

✓
`prev
`

◆
+ ↵ log

✓
`

`prev

◆
+ �Tn

= (1� ↵) log

✓
`prev
`

◆
+ �Tn (8)

From stationarity, P
⇥
log
�
`new/`

�⇤
= P

⇥
log
�
`prev/`

�⇤
= P

⇥
log
�
`/`
�⇤
. Since

the Tn is a Gaussian variable, P
⇥
log
�
`/`
�⇤

is Gaussian too. Variance of the
distribution can be related as follows:

Var
⇥
log
�
`/`
�⇤

= (1� ↵)2Var
⇥
log
�
`/`
�⇤

+ �2Var [Tn] ,

↵(2� ↵)Var
⇥
log
�
`/`
�⇤

= �2Var [Tn]

Var
⇥
log
�
`/`
�⇤

=
�2Var [Tn]

↵(2� ↵)
⌘ �2

` . (9)

Assuming

P [Tn] =
1

�n

p
2⇡

exp

✓
�T 2

n

2�2
n

◆
, (10)

with �2
n = Var [Tn], distribution of `, the newborn cell size, can be derived as

follows:

P
⇥
log
�
`/`
�⇤

=
1

�`

p
2⇡

exp

 
� log

�
`/`
�2

2�2
`

!

P (`) =
1

`�`

p
2⇡

exp

 
� log

�
`/`
�2

2�2
`

!
, (11)

with �2
` = �2�2

T /↵(2� ↵). (see Eq. 9).
The distribution of the generation time can also be calculated in a similar

way. Recalling Eq. 6, considering the Gaussian distribution of Tn and log(`/`),
the generation time, T , should be a Gaussian variable. The variance is deter-
mined from Eq. 6:

Var [T ] =
⇣↵
�

⌘2
Var


log

✓
`

`

◆�
+Var [Tn] ,

Var [T ] =
2↵

↵(2� ↵)
Var [Tn] ⌘ �2

T . (12)
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The distribution of generation time, T , is thus given,

P [T ] =
1

�T

p
2⇡

exp


� (T � 1/�)2

2�2
t

�
. (13)

0.3.2 Testing the model

In this section we test, the model that we have developed against our exper-
imental data. Here are the steps we take to test the mode: i) finding ↵ by
fitting the Eq. 3 to the average generation time versus newborn cell size (Fig. 4,
right panel). ii) Finding the variance of Tn from results plotted in figure 5. iii)
comparing the distribution of generation time and cell size, prediction of the
model in Eqs. 13 and 11.

Finding the value of interpolating parameter ↵. Figure 6 shows the determin-
istic part of the generation time as a function of newborn cells size for a few dif-
ferent cases including the best fit for ↵. The green dashed line in this figure cor-
responds to constant timer where Td = 1/�, regardless of the cell size. The green
dashed line corresponds to fixed division size where Td = 1/�+ (1/�) log

�
`/`
�
,

with ` the half of the division size. The blue line in the figure with error bars
are experimental results and the solid red line is the best fir of Eq. 3 to the
experimental results.

The value of ↵ we have obtained from this fitting is ↵ = 0.48 which is very
close to the special case ↵ = 0.5 in which the cell size increase in each cell cycle
is constant.

2 2.5 3 3.5 415
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ge
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n 
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in
)

newborn size (µm)

Figure 6: The deterministic part of generation time as a function of newborn
size. This graph to to show how to finding the value for the interpolating
parameter ↵. The green dashed line depicts constant timer model, ↵ = 0.
The red dashed line depicts constant division size, ↵. The blue line show the
experimental results. The solid red line shows the best fit corresponding to
↵ = 0.48.
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Finding the standard variation of Tn. To find the standard deviation of Tn,
�n, we used data similar to that plotted in figure 5 for di↵erent bins and took
the average. The value we found is �n = 5.38min.

comparing the model versus experiment. Now that we have the two parame-
ters that we had to obtain by fitting, ↵ = 0.48 and �n = 5.38min, we can com-
pare the distribution of newborn cell length and generation time as predicted in
Eqs. 11 and 13, respectively, with experimental results. Figure 7 depicts both
theoretical predictions and experimental results for these distributions. The
agreement between theory and experiment is remarkable.
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Figure 7: Comparison of model predictions (solid red lines) with experimental
data for the distributions of newborn cell size (left panel) and generation time
(right panel).

0.3.3 Autocorrelation functions
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Figure 8: Autocorrelation function for generation time, elongation rate and cel
size.

0.3.4 Analytical solution for generation time autocorrela-
tion

Here we find the autocorrelation function of generation time for ↵ = 0.5, as
it corresponds to constant cell mass (or, alternatively, length) increase per cell
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cycle. The normalized autocorrelation function is defined as

A(t) =

⌦
(Ti � T ).(Ti+t � T )

↵
⌦
(Ti � T )2

↵ (14)

where Ti is the generation time of a cell with replicative age of i and T = 1/�
is the average generation time of all cells. Ti+t denotes the generation time of
the cell born at replicative age of i + t in the same lineage as the cell with Ti

generation time. The average h i runs over all cells with all replicative ages. In
this section we calculate the A(1) and A(2).

To begin with, let’s choose a random cell, whose replicative age and newborn
length are respectively i and `i. `i is a stochastic variable with log-normal
distribution as calculated in Eq. 11. The generation time for this cell, Ti, is
given based on Eq. 6:

Ti =
1

�
+

1

2�
log

✓
`

`i

◆
+ T i

n. (15)

where T i
n refers to the noise in generation time for this cell. Note that T i

n is a
Gaussian variable independent of i and `i. To calculate A(1), we need to go one
step forward and find the generation time for the next generation cell, whose
replicative age is i + 1. First, considering constant mass increase in each cell
cycle, the newborn length for the next generation cell is given by

`i+1 =
1

2

�
`+ `i

�
⇥ 2�T

i
n (16)

Then, the generation time corresponding to this newborn length is

Ti+1 =
1

�
+

1

2�
log

✓
2`

`i + `
⇥ 2��T i

n

◆
+ T i+1

n

=
1

�
� 1

2�
log

✓
1

2
+

`i
2`

◆
� 1

2
T i
n + T i+1

n . (17)

Since `i/` ⇡ 1, at the first order approximation we can replace log
�
1/2 + `i/2`

�

with 1
2 log

�
`i/`

�
. Ti+1 then reads

Ti+1 =
1

�
� 1

4�
log

✓
`i
`

◆
� 1

2
T i
n + T i+1

n . (18)

Substituting Eqs. 15 and 18 in autocorrelation function we obtain

A(1) =

⌦�
1
2� log

�
`/`i

�
+ T i

n

�
.
�
� 1

4� log
�
`i/`

�
� 1

2T
i
n + T i+1

n

�↵
D�

1
2� log

�
`/`i

�
+ T i

n

�2E . (19)

Here the averages are on over all possible `i, T i
n, T

i+1
n . Mathematically, hXi =R

XP [`i]P
⇥
T i
n

⇤
P
⇥
T i+1
n

⇤
d`idT i

ndT
i+1
n . Since log(`i/`), T i

n, T
i+1
n are indepen-

dent stochastic variables with Gaussian distribution around zero, many terms
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in the above equation are zero once the averaging is carried out. With some
simplification we oobtain

A(1) =

D
1

8�2 log
2 �`i/`

�
� 1

2

�
T i
n

�2E

D
1

4�2 log
2 �`/`i

�
+ (T i

n)
2
E =

1
8�2

⌦
log2

�
`i/`

�↵
� 1

2

D�
T i
n

�2E

1
4�2

⌦
log2

�
`/`i

�↵
+
D
(T i

n)
2
E (20)

The second moment of the Gaussian variables are given as

D�
T i
n

�2E
= �2

n (21)

⌦
log2

�
`i/`

�↵
= �2

` =
�2�2

n
1
2 (2�

1
2 )

(22)

Substituting these moments in previous equation we get

A(1) =
1

4(2�1/2)�
2
n � 1

2�
2
n

1
2(2�1/2)�

2
n + �2

n

= �1

4
. (23)

To find A(2) we should go one step forward. A similar approach yields

A(2) = �1

8
(24)

0.4 conclusions
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